Matches in SemOpenAlex for { <https://semopenalex.org/work/W3207385631> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W3207385631 abstract "Abstract Practical engineering prediction models for flow-induced vibration are needed in the design of structures in the ocean. Research has shown that structural vibration response may be influenced by a large number of physical input parameters, such as damping and Reynolds number. Practical response prediction tools used in design are inevitably a compromise between complexity and simplicity of use. Modern machine learning tools may be used to identify which input parameters are most important. Standard machine learning techniques enable the researcher to compile a list of the most important input parameters, ranked or ordered by the effect of each on the prediction error of the model. When all inputs are treated as equals, blind application of machine learning may lead to predictions that are inconsistent with prior physical knowledge. To address this problem, we conducted a parameter selection process using a prior knowledge-based, trend-informed neural network architecture. This approach was used to identify features important to the prediction of the cross-flow vibration response amplitude of long flexible cylinders, given the known prior effect of Reynolds number and damping. The model balances the usual goal of minimizing the model prediction error, but doing so in a manner that closely follows the extensive knowledge we have of the influence of Reynolds number and damping parameter on response. The resulting neural network model was able to reveal additional insights, including the role of mode number shifting, mode dominance and travelling waves in the regulation of VIV response amplitude." @default.
- W3207385631 created "2021-10-25" @default.
- W3207385631 creator A5009287751 @default.
- W3207385631 creator A5061910153 @default.
- W3207385631 creator A5088187211 @default.
- W3207385631 date "2021-06-21" @default.
- W3207385631 modified "2023-09-27" @default.
- W3207385631 title "Enhancing Machine Learning Models With Prior Physical Knowledge to Aid in VIV Response Prediction" @default.
- W3207385631 cites W1541333710 @default.
- W3207385631 cites W1663973292 @default.
- W3207385631 cites W1974206404 @default.
- W3207385631 cites W1974798415 @default.
- W3207385631 cites W2035522782 @default.
- W3207385631 cites W2040884411 @default.
- W3207385631 cites W2070322986 @default.
- W3207385631 cites W2119479037 @default.
- W3207385631 cites W2128418125 @default.
- W3207385631 cites W2163016253 @default.
- W3207385631 cites W2762965192 @default.
- W3207385631 cites W2803971454 @default.
- W3207385631 cites W2885004202 @default.
- W3207385631 cites W2981586076 @default.
- W3207385631 cites W2982828646 @default.
- W3207385631 cites W3105648287 @default.
- W3207385631 doi "https://doi.org/10.1115/omae2021-62145" @default.
- W3207385631 hasPublicationYear "2021" @default.
- W3207385631 type Work @default.
- W3207385631 sameAs 3207385631 @default.
- W3207385631 citedByCount "0" @default.
- W3207385631 crossrefType "proceedings-article" @default.
- W3207385631 hasAuthorship W3207385631A5009287751 @default.
- W3207385631 hasAuthorship W3207385631A5061910153 @default.
- W3207385631 hasAuthorship W3207385631A5088187211 @default.
- W3207385631 hasBestOaLocation W32073856312 @default.
- W3207385631 hasConcept C111919701 @default.
- W3207385631 hasConcept C119857082 @default.
- W3207385631 hasConcept C121332964 @default.
- W3207385631 hasConcept C154945302 @default.
- W3207385631 hasConcept C182748727 @default.
- W3207385631 hasConcept C196558001 @default.
- W3207385631 hasConcept C198394728 @default.
- W3207385631 hasConcept C41008148 @default.
- W3207385631 hasConcept C50644808 @default.
- W3207385631 hasConcept C62520636 @default.
- W3207385631 hasConcept C97355855 @default.
- W3207385631 hasConcept C98045186 @default.
- W3207385631 hasConceptScore W3207385631C111919701 @default.
- W3207385631 hasConceptScore W3207385631C119857082 @default.
- W3207385631 hasConceptScore W3207385631C121332964 @default.
- W3207385631 hasConceptScore W3207385631C154945302 @default.
- W3207385631 hasConceptScore W3207385631C182748727 @default.
- W3207385631 hasConceptScore W3207385631C196558001 @default.
- W3207385631 hasConceptScore W3207385631C198394728 @default.
- W3207385631 hasConceptScore W3207385631C41008148 @default.
- W3207385631 hasConceptScore W3207385631C50644808 @default.
- W3207385631 hasConceptScore W3207385631C62520636 @default.
- W3207385631 hasConceptScore W3207385631C97355855 @default.
- W3207385631 hasConceptScore W3207385631C98045186 @default.
- W3207385631 hasLocation W32073856311 @default.
- W3207385631 hasLocation W32073856312 @default.
- W3207385631 hasOpenAccess W3207385631 @default.
- W3207385631 hasPrimaryLocation W32073856311 @default.
- W3207385631 hasRelatedWork W2961085424 @default.
- W3207385631 hasRelatedWork W3046775127 @default.
- W3207385631 hasRelatedWork W3170094116 @default.
- W3207385631 hasRelatedWork W4205958290 @default.
- W3207385631 hasRelatedWork W4285260836 @default.
- W3207385631 hasRelatedWork W4286629047 @default.
- W3207385631 hasRelatedWork W4306321456 @default.
- W3207385631 hasRelatedWork W4306674287 @default.
- W3207385631 hasRelatedWork W1629725936 @default.
- W3207385631 hasRelatedWork W4224009465 @default.
- W3207385631 isParatext "false" @default.
- W3207385631 isRetracted "false" @default.
- W3207385631 magId "3207385631" @default.
- W3207385631 workType "article" @default.