Matches in SemOpenAlex for { <https://semopenalex.org/work/W3207467265> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W3207467265 abstract "Mobile Crowdsensing (MCS) enables access to distributed sensing sources of personalized devices so to support various smart services. Services and applications that can benefit from MCS are various such as transportation, health care, public safety, smart mobility and many others. Distributed nature and lack of a pre-established trust mechanism in MCS systems make them vulnerable in the presence of various threats that can be initiated by either sensing data providers or service requesters. While it is relatively easier to detect and eliminate false sensing data submissions via outlier detection, tasks that are submitted to keep the MCS servers and participating devices occupied and clogged are challenging since these attacks can be planned intelligently. In this paper, we investigate the potential of adversarial machine learning to anticipate fake / illegitimate task submissions to MCS systems. To this end, we empower a threat anticipation mechanism that leverages a Generative Adversarial Network (GAN) to inject adversarial samples of fake / illegitimate tasks to an MCS system. We evaluate the impact of GAN-driven attacks in terms of Adversarial Attack Success Rate (AASR) and Attack Severity (AS). Our numerical results show that the potential risk and severity of the offensive use of Machine Learning is significantly higher than an adversarial baseline that injects fake tasks solely based on random noise samples." @default.
- W3207467265 created "2021-10-25" @default.
- W3207467265 creator A5003131477 @default.
- W3207467265 creator A5009674897 @default.
- W3207467265 date "2021-08-01" @default.
- W3207467265 modified "2023-09-26" @default.
- W3207467265 title "Adversarial Machine Learning-Driven Fake Task Anticipation in Mobile Crowdsensing Systems" @default.
- W3207467265 cites W2069514153 @default.
- W3207467265 cites W2294082364 @default.
- W3207467265 cites W2589916387 @default.
- W3207467265 cites W2755577605 @default.
- W3207467265 cites W2763393827 @default.
- W3207467265 cites W2793722525 @default.
- W3207467265 cites W2797602528 @default.
- W3207467265 cites W2798248638 @default.
- W3207467265 cites W2809622771 @default.
- W3207467265 cites W2853090665 @default.
- W3207467265 cites W2889509022 @default.
- W3207467265 cites W2896601134 @default.
- W3207467265 cites W2943584607 @default.
- W3207467265 cites W2944014533 @default.
- W3207467265 cites W2947538082 @default.
- W3207467265 cites W2962061624 @default.
- W3207467265 cites W2976292455 @default.
- W3207467265 cites W2991386458 @default.
- W3207467265 cites W3009498583 @default.
- W3207467265 cites W3021073438 @default.
- W3207467265 cites W3036498435 @default.
- W3207467265 cites W3037857795 @default.
- W3207467265 cites W3040780676 @default.
- W3207467265 cites W3045162568 @default.
- W3207467265 cites W3046118330 @default.
- W3207467265 cites W3091588063 @default.
- W3207467265 cites W3111685368 @default.
- W3207467265 cites W3120953231 @default.
- W3207467265 cites W3126717083 @default.
- W3207467265 doi "https://doi.org/10.1109/sose52839.2021.00011" @default.
- W3207467265 hasPublicationYear "2021" @default.
- W3207467265 type Work @default.
- W3207467265 sameAs 3207467265 @default.
- W3207467265 citedByCount "1" @default.
- W3207467265 countsByYear W32074672652022 @default.
- W3207467265 crossrefType "proceedings-article" @default.
- W3207467265 hasAuthorship W3207467265A5003131477 @default.
- W3207467265 hasAuthorship W3207467265A5009674897 @default.
- W3207467265 hasConcept C107457646 @default.
- W3207467265 hasConcept C119857082 @default.
- W3207467265 hasConcept C154945302 @default.
- W3207467265 hasConcept C162324750 @default.
- W3207467265 hasConcept C176777502 @default.
- W3207467265 hasConcept C187736073 @default.
- W3207467265 hasConcept C2780451532 @default.
- W3207467265 hasConcept C2780821482 @default.
- W3207467265 hasConcept C31258907 @default.
- W3207467265 hasConcept C37736160 @default.
- W3207467265 hasConcept C38652104 @default.
- W3207467265 hasConcept C41008148 @default.
- W3207467265 hasConcept C93996380 @default.
- W3207467265 hasConceptScore W3207467265C107457646 @default.
- W3207467265 hasConceptScore W3207467265C119857082 @default.
- W3207467265 hasConceptScore W3207467265C154945302 @default.
- W3207467265 hasConceptScore W3207467265C162324750 @default.
- W3207467265 hasConceptScore W3207467265C176777502 @default.
- W3207467265 hasConceptScore W3207467265C187736073 @default.
- W3207467265 hasConceptScore W3207467265C2780451532 @default.
- W3207467265 hasConceptScore W3207467265C2780821482 @default.
- W3207467265 hasConceptScore W3207467265C31258907 @default.
- W3207467265 hasConceptScore W3207467265C37736160 @default.
- W3207467265 hasConceptScore W3207467265C38652104 @default.
- W3207467265 hasConceptScore W3207467265C41008148 @default.
- W3207467265 hasConceptScore W3207467265C93996380 @default.
- W3207467265 hasFunder F4320334593 @default.
- W3207467265 hasLocation W32074672651 @default.
- W3207467265 hasOpenAccess W3207467265 @default.
- W3207467265 hasPrimaryLocation W32074672651 @default.
- W3207467265 hasRelatedWork W1547112100 @default.
- W3207467265 hasRelatedWork W1547841080 @default.
- W3207467265 hasRelatedWork W2371023786 @default.
- W3207467265 hasRelatedWork W2921179853 @default.
- W3207467265 hasRelatedWork W2961085424 @default.
- W3207467265 hasRelatedWork W3015853966 @default.
- W3207467265 hasRelatedWork W3200098344 @default.
- W3207467265 hasRelatedWork W3207467265 @default.
- W3207467265 hasRelatedWork W3212211558 @default.
- W3207467265 hasRelatedWork W4366978217 @default.
- W3207467265 isParatext "false" @default.
- W3207467265 isRetracted "false" @default.
- W3207467265 magId "3207467265" @default.
- W3207467265 workType "article" @default.