Matches in SemOpenAlex for { <https://semopenalex.org/work/W3207511901> ?p ?o ?g. }
- W3207511901 endingPage "3600" @default.
- W3207511901 startingPage "3592" @default.
- W3207511901 abstract "Accurate response evaluation is necessary to select complete responders (CRs) for a watch-and-wait approach. Deep learning may aid in this process, but so far has never been evaluated for this purpose. The aim was to evaluate the accuracy to assess response with deep learning methods based on endoscopic images in rectal cancer patients after neoadjuvant therapy.Rectal cancer patients diagnosed between January 2012 and December 2015 and treated with neoadjuvant (chemo)radiotherapy were retrospectively selected from a single institute. All patients underwent flexible endoscopy for response evaluation. Diagnostic performance (accuracy, area under the receiver operator characteristics curve (AUC), positive- and negative predictive values, sensitivities and specificities) of different open accessible deep learning networks was calculated. Reference standard was histology after surgery, or long-term outcome (>2 years of follow-up) in a watch-and-wait policy.226 patients were included for the study (117(52%) were non-CRs; 109(48%) were CRs). The accuracy, AUC, positive- and negative predictive values, sensitivity and specificity of the different models varied from 0.67-0.75%, 0.76-0.83%, 67-74%, 70-78%, 68-79% to 66-75%, respectively. Overall, EfficientNet-B2 was the most successful model with the highest diagnostic performance.This pilot study shows that deep learning has a modest accuracy (AUCs 0.76-0.83). This is not accurate enough for clinical decision making, and lower than what is generally reported by experienced endoscopists. Deep learning models can however be further improved and may become useful to assist endoscopists in evaluating the response. More well-designed prospective studies are required." @default.
- W3207511901 created "2021-10-25" @default.
- W3207511901 creator A5000560005 @default.
- W3207511901 creator A5018705296 @default.
- W3207511901 creator A5020079037 @default.
- W3207511901 creator A5023901139 @default.
- W3207511901 creator A5028105973 @default.
- W3207511901 creator A5040025434 @default.
- W3207511901 creator A5062782199 @default.
- W3207511901 creator A5065565380 @default.
- W3207511901 creator A5083240185 @default.
- W3207511901 date "2021-10-12" @default.
- W3207511901 modified "2023-10-01" @default.
- W3207511901 title "The use of deep learning on endoscopic images to assess the response of rectal cancer after chemoradiation" @default.
- W3207511901 cites W1764231357 @default.
- W3207511901 cites W2019397787 @default.
- W3207511901 cites W2108598243 @default.
- W3207511901 cites W2117490822 @default.
- W3207511901 cites W2117539524 @default.
- W3207511901 cites W2143426320 @default.
- W3207511901 cites W2161581516 @default.
- W3207511901 cites W2183341477 @default.
- W3207511901 cites W2194775991 @default.
- W3207511901 cites W2253429366 @default.
- W3207511901 cites W2296442201 @default.
- W3207511901 cites W2346062110 @default.
- W3207511901 cites W2494683451 @default.
- W3207511901 cites W2531409750 @default.
- W3207511901 cites W2560014990 @default.
- W3207511901 cites W2588184175 @default.
- W3207511901 cites W2762406675 @default.
- W3207511901 cites W2765527079 @default.
- W3207511901 cites W2767290858 @default.
- W3207511901 cites W2769322361 @default.
- W3207511901 cites W2783201053 @default.
- W3207511901 cites W2787510378 @default.
- W3207511901 cites W2809278331 @default.
- W3207511901 cites W2886551281 @default.
- W3207511901 cites W2887719255 @default.
- W3207511901 cites W2896936894 @default.
- W3207511901 cites W2905189062 @default.
- W3207511901 cites W2911316433 @default.
- W3207511901 cites W2916105049 @default.
- W3207511901 cites W2922329578 @default.
- W3207511901 cites W2963446712 @default.
- W3207511901 cites W2964350391 @default.
- W3207511901 cites W2978294504 @default.
- W3207511901 cites W2989610103 @default.
- W3207511901 cites W2989631244 @default.
- W3207511901 cites W3024102649 @default.
- W3207511901 cites W3094595351 @default.
- W3207511901 cites W3124583721 @default.
- W3207511901 cites W4226339223 @default.
- W3207511901 doi "https://doi.org/10.1007/s00464-021-08685-7" @default.
- W3207511901 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34642794" @default.
- W3207511901 hasPublicationYear "2021" @default.
- W3207511901 type Work @default.
- W3207511901 sameAs 3207511901 @default.
- W3207511901 citedByCount "6" @default.
- W3207511901 countsByYear W32075119012022 @default.
- W3207511901 countsByYear W32075119012023 @default.
- W3207511901 crossrefType "journal-article" @default.
- W3207511901 hasAuthorship W3207511901A5000560005 @default.
- W3207511901 hasAuthorship W3207511901A5018705296 @default.
- W3207511901 hasAuthorship W3207511901A5020079037 @default.
- W3207511901 hasAuthorship W3207511901A5023901139 @default.
- W3207511901 hasAuthorship W3207511901A5028105973 @default.
- W3207511901 hasAuthorship W3207511901A5040025434 @default.
- W3207511901 hasAuthorship W3207511901A5062782199 @default.
- W3207511901 hasAuthorship W3207511901A5065565380 @default.
- W3207511901 hasAuthorship W3207511901A5083240185 @default.
- W3207511901 hasBestOaLocation W32075119011 @default.
- W3207511901 hasConcept C108583219 @default.
- W3207511901 hasConcept C121608353 @default.
- W3207511901 hasConcept C126322002 @default.
- W3207511901 hasConcept C126838900 @default.
- W3207511901 hasConcept C141071460 @default.
- W3207511901 hasConcept C154945302 @default.
- W3207511901 hasConcept C2778292576 @default.
- W3207511901 hasConcept C2778451229 @default.
- W3207511901 hasConcept C2780120127 @default.
- W3207511901 hasConcept C3019719930 @default.
- W3207511901 hasConcept C41008148 @default.
- W3207511901 hasConcept C41260117 @default.
- W3207511901 hasConcept C509974204 @default.
- W3207511901 hasConcept C526805850 @default.
- W3207511901 hasConcept C530470458 @default.
- W3207511901 hasConcept C53789813 @default.
- W3207511901 hasConcept C58471807 @default.
- W3207511901 hasConcept C71924100 @default.
- W3207511901 hasConceptScore W3207511901C108583219 @default.
- W3207511901 hasConceptScore W3207511901C121608353 @default.
- W3207511901 hasConceptScore W3207511901C126322002 @default.
- W3207511901 hasConceptScore W3207511901C126838900 @default.
- W3207511901 hasConceptScore W3207511901C141071460 @default.
- W3207511901 hasConceptScore W3207511901C154945302 @default.
- W3207511901 hasConceptScore W3207511901C2778292576 @default.
- W3207511901 hasConceptScore W3207511901C2778451229 @default.