Matches in SemOpenAlex for { <https://semopenalex.org/work/W3207549135> ?p ?o ?g. }
- W3207549135 endingPage "104899" @default.
- W3207549135 startingPage "104899" @default.
- W3207549135 abstract "• Physical and mechanical aspects and nuclear radiation attenuation features are investigated for gallium bismuth borate glasses. • Young’s modulus, bulk modulus, shear modulus, longitudinal modulus, and Poisson’s ratio are deduced using the bond compression model. • Related theoretical approaches and computational methods are utilized to derive shielding factors. • 25B 2 O 3 -65Bi 2 O 3 -10Ga 2 O 3 (mol%) glass shows superior gamma-ray shielding capacity. • 65B 2 O 3 -25Bi 2 O 3 -10Ga 2 O 3 (mol%) glass exhibits better ability for thermal neutrons absorption. For five Ga 2 O 3 -Bi 2 O 3 -B 2 O 3 composition glasses for improved Bi 2 O 3 content at 25 to 65 mol% (10% continuously each time) at a fixed 10 mol% Ga 2 O 3 amount, distinct physical and mechanical aspects and nuclear radiation attenuation factors were investigated. Increased Λ (optical basicity) values with a gradual Bi 2 O 3 addition indicate studied samples’ improving basic character. Applying BC (bond compression) model key mechanical traits such as Y bc (Young’s modulus), K bc (bulk modulus), S (shear modulus), L (longitudinal modulus), and σ (Poisson’s ratio) are evaluated where in all glasses 10Ga 2 O 3 -65Bi 2 O 3 -25B 2 O 3 (mol%) sample exhibits superior elastic moduli. Enhanced Bi 2 O 3 causes for compactness of the gallium borate network as ǹ c (average cross-link density) improves from 2.3 to 3.4 indicating increased rigidity of glasses. Later, PHITS, FLUKA, and MCNPX codes are wielded to derive μ/ρ (mass attenuation coefficient) of all selected samples for photons having energy ranging from 15 KeV to 15 MeV. Simulated μ/ρ quantities exactitude is tested via Phy-X/PSD and WinXCOM programs’ μ/ρ results and identified a fairly good harmony among them. With photon energy, MFP (mean free path), TVL (tenth-value layer), and HVL (half-value layer) values variations show a similar tendency and against the trend which noticed for μ/ρ and μ (linear attenuation coefficient) values. 10Ga 2 O 3 -65Bi 2 O 3 -25B 2 O 3 (mol%) sample’s MFP and HVL are correlated with five commercial γ -ray glass shields’ respective values at 1.25 MeV, 0.662 MeV ( 137 Cs), and 0.2 MeV energies. Further, Z eq (equivalent atomic number) and using G–P (geometric progression) fitting approach for ten individual PDs (penetration depths) within 1–40 mfp range at 15 – 15 × 10 3 KeV energy region BUFs (buildup factors) were estimated. Attained RPE (radiation protection efficiency) findings attest all chosen Ga 2 O 3 -Bi 2 O 3 -B 2 O 3 glasses’ competent absorption capacity for lower energy photons. Next, α -particles and protons MSPs (mass stopping powers), i.e. Ψ A and Ψ P and PRs (projected ranges), i.e. Φ A and Φ P by utilizing SRIM code as well as for electrons MSPs (Ψ E ) and CSDA (continuous slowing‐down approximation) ranges by ESTAR database have been calculated within 15–15 × 10 3 KeV KE (kinetic energy) range. Also, Σ R (fast neutron removal cross-section) and for 0.253 × 10 –4 KeV energy neutrons σ T (total cross-section) and SP (shielding percentage) values were approximated. With Bi 2 O 3 addition, realized Σ R is changed at 0.1161–0.1213 cm −1 extent. For thermal neutrons absorption, 10Ga 2 O 3 -25Bi 2 O 3 -65B 2 O 3 (mol%) glass shows larger σ T (=17.534 cm −1 ) and at any considered thickness higher SP whereas 10Ga 2 O 3 -65Bi 2 O 3 -25B 2 O 3 (mol%) (lead-free) glass has better attenuating features for photons affirming the incorporated Bi 2 O 3 favorable effect." @default.
- W3207549135 created "2021-10-25" @default.
- W3207549135 creator A5004244989 @default.
- W3207549135 creator A5010106680 @default.
- W3207549135 creator A5026414900 @default.
- W3207549135 creator A5027583927 @default.
- W3207549135 creator A5035391902 @default.
- W3207549135 creator A5050693862 @default.
- W3207549135 creator A5051602102 @default.
- W3207549135 creator A5059470260 @default.
- W3207549135 creator A5064221166 @default.
- W3207549135 date "2021-11-01" @default.
- W3207549135 modified "2023-10-03" @default.
- W3207549135 title "Analysis of physical and mechanical traits and nuclear radiation transmission aspects of Gallium(III) trioxide constituting Bi2O3-B2O3 glasses" @default.
- W3207549135 cites W133192498 @default.
- W3207549135 cites W1567010565 @default.
- W3207549135 cites W1770451018 @default.
- W3207549135 cites W1968250305 @default.
- W3207549135 cites W1982381330 @default.
- W3207549135 cites W1986582875 @default.
- W3207549135 cites W1989706693 @default.
- W3207549135 cites W1995991102 @default.
- W3207549135 cites W2008286313 @default.
- W3207549135 cites W2016729800 @default.
- W3207549135 cites W2075321920 @default.
- W3207549135 cites W2079408647 @default.
- W3207549135 cites W2102441272 @default.
- W3207549135 cites W2118091553 @default.
- W3207549135 cites W2133808237 @default.
- W3207549135 cites W2256237232 @default.
- W3207549135 cites W2326809037 @default.
- W3207549135 cites W2343502083 @default.
- W3207549135 cites W23508706 @default.
- W3207549135 cites W2418190062 @default.
- W3207549135 cites W2467357685 @default.
- W3207549135 cites W2591455497 @default.
- W3207549135 cites W2601731729 @default.
- W3207549135 cites W2614033103 @default.
- W3207549135 cites W2726963617 @default.
- W3207549135 cites W2751938392 @default.
- W3207549135 cites W2781913512 @default.
- W3207549135 cites W2783668429 @default.
- W3207549135 cites W2792416760 @default.
- W3207549135 cites W2796158698 @default.
- W3207549135 cites W2887239698 @default.
- W3207549135 cites W2900691492 @default.
- W3207549135 cites W2904232445 @default.
- W3207549135 cites W2913073265 @default.
- W3207549135 cites W2931196234 @default.
- W3207549135 cites W2940126698 @default.
- W3207549135 cites W2942419363 @default.
- W3207549135 cites W2950275681 @default.
- W3207549135 cites W2966529071 @default.
- W3207549135 cites W2976411560 @default.
- W3207549135 cites W2984853766 @default.
- W3207549135 cites W2989656336 @default.
- W3207549135 cites W3002650723 @default.
- W3207549135 cites W3009760305 @default.
- W3207549135 cites W3012983835 @default.
- W3207549135 cites W3033936690 @default.
- W3207549135 cites W3043571891 @default.
- W3207549135 cites W3045777931 @default.
- W3207549135 cites W3048290836 @default.
- W3207549135 cites W3065015344 @default.
- W3207549135 cites W3092257530 @default.
- W3207549135 cites W3092377201 @default.
- W3207549135 cites W3093039309 @default.
- W3207549135 cites W3093506834 @default.
- W3207549135 cites W3093841204 @default.
- W3207549135 cites W3094187850 @default.
- W3207549135 cites W3108054680 @default.
- W3207549135 cites W3114356211 @default.
- W3207549135 cites W3116639827 @default.
- W3207549135 cites W3117083527 @default.
- W3207549135 cites W3123506265 @default.
- W3207549135 cites W3125904082 @default.
- W3207549135 cites W3129882142 @default.
- W3207549135 cites W3134825239 @default.
- W3207549135 cites W3135079357 @default.
- W3207549135 cites W3135228268 @default.
- W3207549135 cites W3138797080 @default.
- W3207549135 cites W3139247882 @default.
- W3207549135 cites W3139405034 @default.
- W3207549135 cites W3141811176 @default.
- W3207549135 cites W3148643780 @default.
- W3207549135 cites W3150408854 @default.
- W3207549135 cites W3156716175 @default.
- W3207549135 cites W3157518212 @default.
- W3207549135 cites W3157761161 @default.
- W3207549135 cites W3167552576 @default.
- W3207549135 cites W3168873222 @default.
- W3207549135 doi "https://doi.org/10.1016/j.rinp.2021.104899" @default.
- W3207549135 hasPublicationYear "2021" @default.
- W3207549135 type Work @default.
- W3207549135 sameAs 3207549135 @default.
- W3207549135 citedByCount "14" @default.
- W3207549135 countsByYear W32075491352021 @default.
- W3207549135 countsByYear W32075491352022 @default.