Matches in SemOpenAlex for { <https://semopenalex.org/work/W3207549851> ?p ?o ?g. }
- W3207549851 endingPage "11086" @default.
- W3207549851 startingPage "11086" @default.
- W3207549851 abstract "In the recent pandemic, accurate and rapid testing of patients remained a critical task in the diagnosis and control of COVID-19 disease spread in the healthcare industry. Because of the sudden increase in cases, most countries have faced scarcity and a low rate of testing. Chest X-rays have been shown in the literature to be a potential source of testing for COVID-19 patients, but manually checking X-ray reports is time-consuming and error-prone. Considering these limitations and the advancements in data science, we proposed a Vision Transformer-based deep learning pipeline for COVID-19 detection from chest X-ray-based imaging. Due to the lack of large data sets, we collected data from three open-source data sets of chest X-ray images and aggregated them to form a 30 K image data set, which is the largest publicly available collection of chest X-ray images in this domain to our knowledge. Our proposed transformer model effectively differentiates COVID-19 from normal chest X-rays with an accuracy of 98% along with an AUC score of 99% in the binary classification task. It distinguishes COVID-19, normal, and pneumonia patient's X-rays with an accuracy of 92% and AUC score of 98% in the Multi-class classification task. For evaluation on our data set, we fine-tuned some of the widely used models in literature, namely, EfficientNetB0, InceptionV3, Resnet50, MobileNetV3, Xception, and DenseNet-121, as baselines. Our proposed transformer model outperformed them in terms of all metrics. In addition, a Grad-CAM based visualization is created which makes our approach interpretable by radiologists and can be used to monitor the progression of the disease in the affected lungs, assisting healthcare." @default.
- W3207549851 created "2021-10-25" @default.
- W3207549851 creator A5018267985 @default.
- W3207549851 creator A5022613820 @default.
- W3207549851 creator A5054835425 @default.
- W3207549851 creator A5056690703 @default.
- W3207549851 creator A5058396473 @default.
- W3207549851 creator A5062772547 @default.
- W3207549851 creator A5082046789 @default.
- W3207549851 creator A5082912094 @default.
- W3207549851 date "2021-10-21" @default.
- W3207549851 modified "2023-10-18" @default.
- W3207549851 title "COVID-Transformer: Interpretable COVID-19 Detection Using Vision Transformer for Healthcare" @default.
- W3207549851 cites W3013547516 @default.
- W3207549851 cites W3013933578 @default.
- W3207549851 cites W3021921998 @default.
- W3207549851 cites W3023402713 @default.
- W3207549851 cites W3028231159 @default.
- W3207549851 cites W3033616466 @default.
- W3207549851 cites W3040617750 @default.
- W3207549851 cites W3042853815 @default.
- W3207549851 cites W3048670851 @default.
- W3207549851 cites W3080406710 @default.
- W3207549851 cites W3085708132 @default.
- W3207549851 cites W3096918659 @default.
- W3207549851 cites W3099183222 @default.
- W3207549851 cites W3099905444 @default.
- W3207549851 cites W3103635657 @default.
- W3207549851 cites W3106794539 @default.
- W3207549851 cites W3110602624 @default.
- W3207549851 cites W3120806310 @default.
- W3207549851 cites W3125950809 @default.
- W3207549851 cites W3127020108 @default.
- W3207549851 cites W3128041674 @default.
- W3207549851 cites W3128286680 @default.
- W3207549851 cites W3134475970 @default.
- W3207549851 cites W3144030700 @default.
- W3207549851 cites W3154884208 @default.
- W3207549851 cites W3162578046 @default.
- W3207549851 cites W3166303156 @default.
- W3207549851 cites W3189715451 @default.
- W3207549851 cites W3197015012 @default.
- W3207549851 cites W3199608195 @default.
- W3207549851 cites W3200805437 @default.
- W3207549851 cites W3201299280 @default.
- W3207549851 doi "https://doi.org/10.3390/ijerph182111086" @default.
- W3207549851 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8583247" @default.
- W3207549851 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34769600" @default.
- W3207549851 hasPublicationYear "2021" @default.
- W3207549851 type Work @default.
- W3207549851 sameAs 3207549851 @default.
- W3207549851 citedByCount "49" @default.
- W3207549851 countsByYear W32075498512022 @default.
- W3207549851 countsByYear W32075498512023 @default.
- W3207549851 crossrefType "journal-article" @default.
- W3207549851 hasAuthorship W3207549851A5018267985 @default.
- W3207549851 hasAuthorship W3207549851A5022613820 @default.
- W3207549851 hasAuthorship W3207549851A5054835425 @default.
- W3207549851 hasAuthorship W3207549851A5056690703 @default.
- W3207549851 hasAuthorship W3207549851A5058396473 @default.
- W3207549851 hasAuthorship W3207549851A5062772547 @default.
- W3207549851 hasAuthorship W3207549851A5082046789 @default.
- W3207549851 hasAuthorship W3207549851A5082912094 @default.
- W3207549851 hasBestOaLocation W32075498511 @default.
- W3207549851 hasConcept C119599485 @default.
- W3207549851 hasConcept C119857082 @default.
- W3207549851 hasConcept C12267149 @default.
- W3207549851 hasConcept C124101348 @default.
- W3207549851 hasConcept C127413603 @default.
- W3207549851 hasConcept C142724271 @default.
- W3207549851 hasConcept C153180895 @default.
- W3207549851 hasConcept C154945302 @default.
- W3207549851 hasConcept C165801399 @default.
- W3207549851 hasConcept C169903167 @default.
- W3207549851 hasConcept C2779134260 @default.
- W3207549851 hasConcept C3008058167 @default.
- W3207549851 hasConcept C41008148 @default.
- W3207549851 hasConcept C524204448 @default.
- W3207549851 hasConcept C58489278 @default.
- W3207549851 hasConcept C66322947 @default.
- W3207549851 hasConcept C66905080 @default.
- W3207549851 hasConcept C71924100 @default.
- W3207549851 hasConceptScore W3207549851C119599485 @default.
- W3207549851 hasConceptScore W3207549851C119857082 @default.
- W3207549851 hasConceptScore W3207549851C12267149 @default.
- W3207549851 hasConceptScore W3207549851C124101348 @default.
- W3207549851 hasConceptScore W3207549851C127413603 @default.
- W3207549851 hasConceptScore W3207549851C142724271 @default.
- W3207549851 hasConceptScore W3207549851C153180895 @default.
- W3207549851 hasConceptScore W3207549851C154945302 @default.
- W3207549851 hasConceptScore W3207549851C165801399 @default.
- W3207549851 hasConceptScore W3207549851C169903167 @default.
- W3207549851 hasConceptScore W3207549851C2779134260 @default.
- W3207549851 hasConceptScore W3207549851C3008058167 @default.
- W3207549851 hasConceptScore W3207549851C41008148 @default.
- W3207549851 hasConceptScore W3207549851C524204448 @default.
- W3207549851 hasConceptScore W3207549851C58489278 @default.
- W3207549851 hasConceptScore W3207549851C66322947 @default.