Matches in SemOpenAlex for { <https://semopenalex.org/work/W3207556645> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W3207556645 endingPage "1591" @default.
- W3207556645 startingPage "1577" @default.
- W3207556645 abstract "Unmanned Aerial Vehicles (UAVs) are in use for surveillance services in the geographic areas, that are very hard and sometimes not reachable by humans. Nowadays, UAVs are being used as substitutions to manned operations in various applications. The intensive utilization of autonomous UAVs has given rise to many new challenges. One of the vital problems that arise while deploying UAVs in surveillance applications is the Coverage Path Planning(CPP) problem. Given a geographic area, the problem is to find an optimal path/tour for the UAV such that it covers the entire area of interest with minimal tour length. A graph can be constructed from the map of the area under surveillance, using computational geometric techniques. In this work, the Coverage Path Planning problem is posed as a Travelling Salesperson Problem(TSP) on these graphs. The graphs obtained are large in number of vertices and edges and the real-time applications require good computation speed. Hence a model is built using Graph Convolution Network (GCN). The model is effectively trained with different problem instances such as TSP20, TSP50, and TSP100. Results obtained from the Concorde Benchmark Dataset were used to analyze the optimality of the predicted tour length by the GCN. The model is also evaluated against the performance of evolutionary algorithms on several self-constructed graphs. Particle Swarm Optimization, Ant Colony Optimization, and Firefly Algorithm are used to find optimal tours and are compared with GCN. It is found that the proposed GCN framework outperforms these evolutionary algorithms in optimal tour length and also the computation time." @default.
- W3207556645 created "2021-10-25" @default.
- W3207556645 creator A5021524457 @default.
- W3207556645 creator A5059219928 @default.
- W3207556645 date "2022-01-01" @default.
- W3207556645 modified "2023-10-01" @default.
- W3207556645 title "Optimal Path Planning for Intelligent UAVs Using Graph Convolution Networks" @default.
- W3207556645 cites W2065862878 @default.
- W3207556645 cites W2528929878 @default.
- W3207556645 cites W2584262413 @default.
- W3207556645 cites W2800786248 @default.
- W3207556645 cites W2985331920 @default.
- W3207556645 cites W3011395188 @default.
- W3207556645 cites W3040731923 @default.
- W3207556645 cites W3048783225 @default.
- W3207556645 cites W3109714359 @default.
- W3207556645 doi "https://doi.org/10.32604/iasc.2022.020974" @default.
- W3207556645 hasPublicationYear "2022" @default.
- W3207556645 type Work @default.
- W3207556645 sameAs 3207556645 @default.
- W3207556645 citedByCount "4" @default.
- W3207556645 countsByYear W32075566452023 @default.
- W3207556645 crossrefType "journal-article" @default.
- W3207556645 hasAuthorship W3207556645A5021524457 @default.
- W3207556645 hasAuthorship W3207556645A5059219928 @default.
- W3207556645 hasBestOaLocation W32075566451 @default.
- W3207556645 hasConcept C11413529 @default.
- W3207556645 hasConcept C126255220 @default.
- W3207556645 hasConcept C132525143 @default.
- W3207556645 hasConcept C13280743 @default.
- W3207556645 hasConcept C154945302 @default.
- W3207556645 hasConcept C159149176 @default.
- W3207556645 hasConcept C185798385 @default.
- W3207556645 hasConcept C205649164 @default.
- W3207556645 hasConcept C22590252 @default.
- W3207556645 hasConcept C2777735758 @default.
- W3207556645 hasConcept C31258907 @default.
- W3207556645 hasConcept C33923547 @default.
- W3207556645 hasConcept C40128228 @default.
- W3207556645 hasConcept C41008148 @default.
- W3207556645 hasConcept C45374587 @default.
- W3207556645 hasConcept C80444323 @default.
- W3207556645 hasConcept C81074085 @default.
- W3207556645 hasConcept C85617194 @default.
- W3207556645 hasConcept C90509273 @default.
- W3207556645 hasConceptScore W3207556645C11413529 @default.
- W3207556645 hasConceptScore W3207556645C126255220 @default.
- W3207556645 hasConceptScore W3207556645C132525143 @default.
- W3207556645 hasConceptScore W3207556645C13280743 @default.
- W3207556645 hasConceptScore W3207556645C154945302 @default.
- W3207556645 hasConceptScore W3207556645C159149176 @default.
- W3207556645 hasConceptScore W3207556645C185798385 @default.
- W3207556645 hasConceptScore W3207556645C205649164 @default.
- W3207556645 hasConceptScore W3207556645C22590252 @default.
- W3207556645 hasConceptScore W3207556645C2777735758 @default.
- W3207556645 hasConceptScore W3207556645C31258907 @default.
- W3207556645 hasConceptScore W3207556645C33923547 @default.
- W3207556645 hasConceptScore W3207556645C40128228 @default.
- W3207556645 hasConceptScore W3207556645C41008148 @default.
- W3207556645 hasConceptScore W3207556645C45374587 @default.
- W3207556645 hasConceptScore W3207556645C80444323 @default.
- W3207556645 hasConceptScore W3207556645C81074085 @default.
- W3207556645 hasConceptScore W3207556645C85617194 @default.
- W3207556645 hasConceptScore W3207556645C90509273 @default.
- W3207556645 hasIssue "3" @default.
- W3207556645 hasLocation W32075566451 @default.
- W3207556645 hasOpenAccess W3207556645 @default.
- W3207556645 hasPrimaryLocation W32075566451 @default.
- W3207556645 hasRelatedWork W2381327266 @default.
- W3207556645 hasRelatedWork W2387694468 @default.
- W3207556645 hasRelatedWork W2391412785 @default.
- W3207556645 hasRelatedWork W2536648895 @default.
- W3207556645 hasRelatedWork W2543922997 @default.
- W3207556645 hasRelatedWork W2950740898 @default.
- W3207556645 hasRelatedWork W2981066196 @default.
- W3207556645 hasRelatedWork W3201035916 @default.
- W3207556645 hasRelatedWork W4313512091 @default.
- W3207556645 hasRelatedWork W4386289885 @default.
- W3207556645 hasVolume "31" @default.
- W3207556645 isParatext "false" @default.
- W3207556645 isRetracted "false" @default.
- W3207556645 magId "3207556645" @default.
- W3207556645 workType "article" @default.