Matches in SemOpenAlex for { <https://semopenalex.org/work/W3207565867> ?p ?o ?g. }
- W3207565867 abstract "Plasma‐based biomedical applications rely on the reactive oxygen and nitrogen species generated in cold atmospheric plasmas, where complex chemical kinetic schemes occur. The optimization of plasma medicine is thus required for each specific biomedical purpose. In the view of pharmacology, it is to optimize the active pharmaceutical ingredients. This work is thus the first attempt of such a complex task utilizing the recent development of machine learning technologies. Herein, a general method of passive plasma chemical diagnostics and optimization in real time is proposed. Based on spontaneous emission spectroscopy, an artificial neural network provides the gas chemical compositions along with other information such as temperatures. The information further passes through the second neural network which outputs the adjustments of external control inputs including energy, gas injections, and extractions to optimize the plasma chemistry." @default.
- W3207565867 created "2021-10-25" @default.
- W3207565867 creator A5020132536 @default.
- W3207565867 creator A5055111665 @default.
- W3207565867 creator A5074480699 @default.
- W3207565867 date "2021-10-14" @default.
- W3207565867 modified "2023-10-10" @default.
- W3207565867 title "Self‐Adaptive Plasma Chemistry and Intelligent Plasma Medicine" @default.
- W3207565867 cites W1963005295 @default.
- W3207565867 cites W1977535185 @default.
- W3207565867 cites W1978133924 @default.
- W3207565867 cites W1979083859 @default.
- W3207565867 cites W2001074298 @default.
- W3207565867 cites W2008046219 @default.
- W3207565867 cites W2010781374 @default.
- W3207565867 cites W2012010752 @default.
- W3207565867 cites W2032445878 @default.
- W3207565867 cites W2032522436 @default.
- W3207565867 cites W2034150944 @default.
- W3207565867 cites W2040359266 @default.
- W3207565867 cites W2040791176 @default.
- W3207565867 cites W2043241061 @default.
- W3207565867 cites W2046286036 @default.
- W3207565867 cites W2064261010 @default.
- W3207565867 cites W2068004356 @default.
- W3207565867 cites W2081675351 @default.
- W3207565867 cites W2084226663 @default.
- W3207565867 cites W2084948956 @default.
- W3207565867 cites W2094453630 @default.
- W3207565867 cites W2112796928 @default.
- W3207565867 cites W2122587714 @default.
- W3207565867 cites W2124748749 @default.
- W3207565867 cites W2129953607 @default.
- W3207565867 cites W2132744240 @default.
- W3207565867 cites W2146879413 @default.
- W3207565867 cites W2154475416 @default.
- W3207565867 cites W2155408715 @default.
- W3207565867 cites W2169327432 @default.
- W3207565867 cites W2291083114 @default.
- W3207565867 cites W2399966664 @default.
- W3207565867 cites W2510818905 @default.
- W3207565867 cites W2553593772 @default.
- W3207565867 cites W2560211500 @default.
- W3207565867 cites W2727076144 @default.
- W3207565867 cites W2734710772 @default.
- W3207565867 cites W2737844292 @default.
- W3207565867 cites W2793306696 @default.
- W3207565867 cites W2799670296 @default.
- W3207565867 cites W2885208219 @default.
- W3207565867 cites W2890636117 @default.
- W3207565867 cites W2897878702 @default.
- W3207565867 cites W2899076609 @default.
- W3207565867 cites W2899817148 @default.
- W3207565867 cites W2938909558 @default.
- W3207565867 cites W2955319624 @default.
- W3207565867 cites W2969408081 @default.
- W3207565867 cites W3033793958 @default.
- W3207565867 cites W3042484135 @default.
- W3207565867 cites W3082338634 @default.
- W3207565867 cites W3097974091 @default.
- W3207565867 cites W3124852102 @default.
- W3207565867 cites W3128618408 @default.
- W3207565867 doi "https://doi.org/10.1002/aisy.202100112" @default.
- W3207565867 hasPublicationYear "2021" @default.
- W3207565867 type Work @default.
- W3207565867 sameAs 3207565867 @default.
- W3207565867 citedByCount "9" @default.
- W3207565867 countsByYear W32075658672022 @default.
- W3207565867 countsByYear W32075658672023 @default.
- W3207565867 crossrefType "journal-article" @default.
- W3207565867 hasAuthorship W3207565867A5020132536 @default.
- W3207565867 hasAuthorship W3207565867A5055111665 @default.
- W3207565867 hasAuthorship W3207565867A5074480699 @default.
- W3207565867 hasConcept C111919701 @default.
- W3207565867 hasConcept C121332964 @default.
- W3207565867 hasConcept C127413603 @default.
- W3207565867 hasConcept C129713178 @default.
- W3207565867 hasConcept C145738678 @default.
- W3207565867 hasConcept C149672232 @default.
- W3207565867 hasConcept C154945302 @default.
- W3207565867 hasConcept C171250308 @default.
- W3207565867 hasConcept C183696295 @default.
- W3207565867 hasConcept C185592680 @default.
- W3207565867 hasConcept C186060115 @default.
- W3207565867 hasConcept C192562407 @default.
- W3207565867 hasConcept C2985119592 @default.
- W3207565867 hasConcept C41008148 @default.
- W3207565867 hasConcept C50644808 @default.
- W3207565867 hasConcept C62520636 @default.
- W3207565867 hasConcept C82706917 @default.
- W3207565867 hasConcept C85344455 @default.
- W3207565867 hasConcept C86803240 @default.
- W3207565867 hasConceptScore W3207565867C111919701 @default.
- W3207565867 hasConceptScore W3207565867C121332964 @default.
- W3207565867 hasConceptScore W3207565867C127413603 @default.
- W3207565867 hasConceptScore W3207565867C129713178 @default.
- W3207565867 hasConceptScore W3207565867C145738678 @default.
- W3207565867 hasConceptScore W3207565867C149672232 @default.
- W3207565867 hasConceptScore W3207565867C154945302 @default.
- W3207565867 hasConceptScore W3207565867C171250308 @default.