Matches in SemOpenAlex for { <https://semopenalex.org/work/W3207588480> ?p ?o ?g. }
- W3207588480 endingPage "7601" @default.
- W3207588480 startingPage "7590" @default.
- W3207588480 abstract "On-treatment kV images have been used in tracking patient motion. One challenge of markerless motion tracking in paraspinal SBRT is the reduced contrast when the X-ray beam needs to pass through a large portion of the patient's body, for example, from the lateral direction. Besides, due to the spine's overlapping with the surrounding moving organs in the X-ray images, auto-registration could lead to potential errors. This work aims to automatically extract the spine component from the conventional 2D X-ray images, to achieve more robust and more accurate motion management. A ResNet generative adversarial network (ResNetGAN) consisting of one generator and one discriminator was developed to learn the mapping between 2D kV image and the reference spine digitally reconstructed radiograph (DRR). A tailored multi-channel multi-domain loss function was used to improve the quality of the decomposed spine image. The trained model took a 2D kV image as input and learned to generate the spine component of the X-ray image. The training dataset included 1347 2D kV thoracic and lumbar region X-ray images from 20 randomly selected patients, and the corresponding matched reference spine DRR. Another 226 2D kV images from the remaining four patients were used for evaluation. The resulted decomposed spine images and the original X-ray images were registered to the reference spine DRRs, to compare the spine tracking accuracy. The decomposed spine image had the mean peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM) of 60.08 and 0.99, respectively, indicating the model retained and enhanced the spine structure information in the original 2D X-ray image. The decomposed spine image matching with the reference spine DRR had submillimeter accuracy (in mm) with a mean error of 0.13, 0.12, and a maximum of 0.58, 0.49 in the x - and y -directions (in the imager coordinates), respectively. The accuracy improvement is robust in all lateral and anteroposterior X-ray beam angles. We developed a deep learning-based approach to remove soft tissues in the kV image, leading to more accurate spine tracking in paraspinal SBRT." @default.
- W3207588480 created "2021-10-25" @default.
- W3207588480 creator A5009232538 @default.
- W3207588480 creator A5034119956 @default.
- W3207588480 creator A5041395889 @default.
- W3207588480 creator A5058225724 @default.
- W3207588480 creator A5065231164 @default.
- W3207588480 creator A5067975442 @default.
- W3207588480 creator A5069136703 @default.
- W3207588480 creator A5069998769 @default.
- W3207588480 creator A5082946919 @default.
- W3207588480 date "2021-10-28" @default.
- W3207588480 modified "2023-09-27" @default.
- W3207588480 title "Decompose kV projection using neural network for improved motion tracking in paraspinal SBRT" @default.
- W3207588480 cites W1499110203 @default.
- W3207588480 cites W1580389772 @default.
- W3207588480 cites W1852996005 @default.
- W3207588480 cites W1940971018 @default.
- W3207588480 cites W1971760093 @default.
- W3207588480 cites W1981361272 @default.
- W3207588480 cites W1992002947 @default.
- W3207588480 cites W1994166781 @default.
- W3207588480 cites W2009652019 @default.
- W3207588480 cites W2010170753 @default.
- W3207588480 cites W2023137005 @default.
- W3207588480 cites W2023999969 @default.
- W3207588480 cites W2027437440 @default.
- W3207588480 cites W2034432063 @default.
- W3207588480 cites W2077080208 @default.
- W3207588480 cites W2088891636 @default.
- W3207588480 cites W2117539524 @default.
- W3207588480 cites W2144803137 @default.
- W3207588480 cites W2148900397 @default.
- W3207588480 cites W2158733355 @default.
- W3207588480 cites W2194775991 @default.
- W3207588480 cites W2235820615 @default.
- W3207588480 cites W2392867561 @default.
- W3207588480 cites W2619458442 @default.
- W3207588480 cites W2755962413 @default.
- W3207588480 cites W2775223042 @default.
- W3207588480 cites W2791031529 @default.
- W3207588480 cites W2945019228 @default.
- W3207588480 cites W2951743624 @default.
- W3207588480 cites W2952945079 @default.
- W3207588480 cites W2963073614 @default.
- W3207588480 cites W2969929395 @default.
- W3207588480 cites W3024099531 @default.
- W3207588480 cites W3026908889 @default.
- W3207588480 cites W3096831136 @default.
- W3207588480 cites W3109907940 @default.
- W3207588480 doi "https://doi.org/10.1002/mp.15295" @default.
- W3207588480 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34655442" @default.
- W3207588480 hasPublicationYear "2021" @default.
- W3207588480 type Work @default.
- W3207588480 sameAs 3207588480 @default.
- W3207588480 citedByCount "5" @default.
- W3207588480 countsByYear W32075884802022 @default.
- W3207588480 countsByYear W32075884802023 @default.
- W3207588480 crossrefType "journal-article" @default.
- W3207588480 hasAuthorship W3207588480A5009232538 @default.
- W3207588480 hasAuthorship W3207588480A5034119956 @default.
- W3207588480 hasAuthorship W3207588480A5041395889 @default.
- W3207588480 hasAuthorship W3207588480A5058225724 @default.
- W3207588480 hasAuthorship W3207588480A5065231164 @default.
- W3207588480 hasAuthorship W3207588480A5067975442 @default.
- W3207588480 hasAuthorship W3207588480A5069136703 @default.
- W3207588480 hasAuthorship W3207588480A5069998769 @default.
- W3207588480 hasAuthorship W3207588480A5082946919 @default.
- W3207588480 hasBestOaLocation W32075884801 @default.
- W3207588480 hasConcept C103278499 @default.
- W3207588480 hasConcept C115961682 @default.
- W3207588480 hasConcept C154945302 @default.
- W3207588480 hasConcept C15744967 @default.
- W3207588480 hasConcept C19417346 @default.
- W3207588480 hasConcept C2775936607 @default.
- W3207588480 hasConcept C2779803651 @default.
- W3207588480 hasConcept C31972630 @default.
- W3207588480 hasConcept C41008148 @default.
- W3207588480 hasConcept C55020928 @default.
- W3207588480 hasConcept C76155785 @default.
- W3207588480 hasConcept C94915269 @default.
- W3207588480 hasConceptScore W3207588480C103278499 @default.
- W3207588480 hasConceptScore W3207588480C115961682 @default.
- W3207588480 hasConceptScore W3207588480C154945302 @default.
- W3207588480 hasConceptScore W3207588480C15744967 @default.
- W3207588480 hasConceptScore W3207588480C19417346 @default.
- W3207588480 hasConceptScore W3207588480C2775936607 @default.
- W3207588480 hasConceptScore W3207588480C2779803651 @default.
- W3207588480 hasConceptScore W3207588480C31972630 @default.
- W3207588480 hasConceptScore W3207588480C41008148 @default.
- W3207588480 hasConceptScore W3207588480C55020928 @default.
- W3207588480 hasConceptScore W3207588480C76155785 @default.
- W3207588480 hasConceptScore W3207588480C94915269 @default.
- W3207588480 hasIssue "12" @default.
- W3207588480 hasLocation W32075884801 @default.
- W3207588480 hasLocation W32075884802 @default.
- W3207588480 hasLocation W32075884803 @default.
- W3207588480 hasOpenAccess W3207588480 @default.