Matches in SemOpenAlex for { <https://semopenalex.org/work/W3207592251> ?p ?o ?g. }
- W3207592251 endingPage "3579" @default.
- W3207592251 startingPage "3568" @default.
- W3207592251 abstract "Direct-optimization-based dictionary learning has attracted increasing attention for improving computational efficiency. However, the existing direct optimization scheme can only be applied to limited dictionary learning problems, and it remains an open problem to prove that the whole sequence obtained by the algorithm converges to a critical point of the objective function. In this article, we propose a novel direct-optimization-based dictionary learning algorithm using the minimax concave penalty (MCP) as a sparsity regularizer that can enforce strong sparsity and obtain accurate estimation. For solving the corresponding optimization problem, we first decompose the nonconvex MCP into two convex components. Then, we employ the difference of the convex functions algorithm and the nonconvex proximal-splitting algorithm to process the resulting subproblems. Thus, the direct optimization approach can be extended to a broader class of dictionary learning problems, even if the sparsity regularizer is nonconvex. In addition, the convergence guarantee for the proposed algorithm can be theoretically proven. Our numerical simulations demonstrate that the proposed algorithm has good convergence performances in different cases and robust dictionary-recovery capabilities. When applied to sparse approximations, the proposed approach can obtain sparser and less error estimation than the different sparsity regularizers in existing methods. In addition, the proposed algorithm has robustness in image denoising and key-frame extraction." @default.
- W3207592251 created "2021-10-25" @default.
- W3207592251 creator A5023248590 @default.
- W3207592251 creator A5062429830 @default.
- W3207592251 creator A5069624559 @default.
- W3207592251 creator A5075142211 @default.
- W3207592251 date "2023-07-01" @default.
- W3207592251 modified "2023-10-14" @default.
- W3207592251 title "Direct-Optimization-Based DC Dictionary Learning With the MCP Regularizer" @default.
- W3207592251 cites W1965125844 @default.
- W3207592251 cites W1966872876 @default.
- W3207592251 cites W1967138577 @default.
- W3207592251 cites W1988557812 @default.
- W3207592251 cites W2020222100 @default.
- W3207592251 cites W2027982384 @default.
- W3207592251 cites W2056201402 @default.
- W3207592251 cites W2069390315 @default.
- W3207592251 cites W2100556411 @default.
- W3207592251 cites W2107214962 @default.
- W3207592251 cites W2115706991 @default.
- W3207592251 cites W2126534699 @default.
- W3207592251 cites W2146949217 @default.
- W3207592251 cites W2160547390 @default.
- W3207592251 cites W2415447328 @default.
- W3207592251 cites W2569743374 @default.
- W3207592251 cites W2751178015 @default.
- W3207592251 cites W2772732314 @default.
- W3207592251 cites W2781571649 @default.
- W3207592251 cites W2789587413 @default.
- W3207592251 cites W2808301361 @default.
- W3207592251 cites W2888733980 @default.
- W3207592251 cites W2936787912 @default.
- W3207592251 cites W2941407754 @default.
- W3207592251 cites W2946510509 @default.
- W3207592251 cites W2963097726 @default.
- W3207592251 cites W2988685755 @default.
- W3207592251 cites W3000471755 @default.
- W3207592251 cites W3006871679 @default.
- W3207592251 cites W3022399687 @default.
- W3207592251 cites W3033581023 @default.
- W3207592251 cites W3039975350 @default.
- W3207592251 cites W3101793298 @default.
- W3207592251 cites W3111278072 @default.
- W3207592251 doi "https://doi.org/10.1109/tnnls.2021.3114400" @default.
- W3207592251 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34633934" @default.
- W3207592251 hasPublicationYear "2023" @default.
- W3207592251 type Work @default.
- W3207592251 sameAs 3207592251 @default.
- W3207592251 citedByCount "4" @default.
- W3207592251 countsByYear W32075922512022 @default.
- W3207592251 countsByYear W32075922512023 @default.
- W3207592251 crossrefType "journal-article" @default.
- W3207592251 hasAuthorship W3207592251A5023248590 @default.
- W3207592251 hasAuthorship W3207592251A5062429830 @default.
- W3207592251 hasAuthorship W3207592251A5069624559 @default.
- W3207592251 hasAuthorship W3207592251A5075142211 @default.
- W3207592251 hasBestOaLocation W32075922511 @default.
- W3207592251 hasConcept C104317684 @default.
- W3207592251 hasConcept C112680207 @default.
- W3207592251 hasConcept C11413529 @default.
- W3207592251 hasConcept C126255220 @default.
- W3207592251 hasConcept C137836250 @default.
- W3207592251 hasConcept C149728462 @default.
- W3207592251 hasConcept C157972887 @default.
- W3207592251 hasConcept C162324750 @default.
- W3207592251 hasConcept C185592680 @default.
- W3207592251 hasConcept C2524010 @default.
- W3207592251 hasConcept C2777303404 @default.
- W3207592251 hasConcept C33923547 @default.
- W3207592251 hasConcept C41008148 @default.
- W3207592251 hasConcept C50522688 @default.
- W3207592251 hasConcept C55493867 @default.
- W3207592251 hasConcept C63479239 @default.
- W3207592251 hasConceptScore W3207592251C104317684 @default.
- W3207592251 hasConceptScore W3207592251C112680207 @default.
- W3207592251 hasConceptScore W3207592251C11413529 @default.
- W3207592251 hasConceptScore W3207592251C126255220 @default.
- W3207592251 hasConceptScore W3207592251C137836250 @default.
- W3207592251 hasConceptScore W3207592251C149728462 @default.
- W3207592251 hasConceptScore W3207592251C157972887 @default.
- W3207592251 hasConceptScore W3207592251C162324750 @default.
- W3207592251 hasConceptScore W3207592251C185592680 @default.
- W3207592251 hasConceptScore W3207592251C2524010 @default.
- W3207592251 hasConceptScore W3207592251C2777303404 @default.
- W3207592251 hasConceptScore W3207592251C33923547 @default.
- W3207592251 hasConceptScore W3207592251C41008148 @default.
- W3207592251 hasConceptScore W3207592251C50522688 @default.
- W3207592251 hasConceptScore W3207592251C55493867 @default.
- W3207592251 hasConceptScore W3207592251C63479239 @default.
- W3207592251 hasFunder F4320321001 @default.
- W3207592251 hasIssue "7" @default.
- W3207592251 hasLocation W32075922511 @default.
- W3207592251 hasLocation W32075922512 @default.
- W3207592251 hasOpenAccess W3207592251 @default.
- W3207592251 hasPrimaryLocation W32075922511 @default.
- W3207592251 hasRelatedWork W2166425104 @default.
- W3207592251 hasRelatedWork W2227983344 @default.
- W3207592251 hasRelatedWork W2273126489 @default.