Matches in SemOpenAlex for { <https://semopenalex.org/work/W3207598523> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W3207598523 endingPage "2537" @default.
- W3207598523 startingPage "2537" @default.
- W3207598523 abstract "Increased meat consumption has been associated with the overuse of fresh water, underground water contamination, land degradation, and negative animal welfare. To mitigate these problems, replacing animal meat products with alternatives such as plant-, insect-, algae-, or yeast-fermented-based proteins, and/or cultured meat, is a viable strategy. Nowadays, there is a vast amount of information regarding consumers' perceptions of alternative proteins in scientific outlets. Sorting and arranging this information can be time-consuming. To overcome this drawback, text mining and Natural Language Processing (NLP) are introduced as novel approaches to obtain sensory data and rapidly identify current consumer trends. In this study, the application of text mining and NLP in gathering information about alternative proteins was explored by analyzing key descriptive words and sentiments from n = 20 academic papers. From 2018 to 2021, insect- and plant-based proteins were the centers of alternative proteins research as these were the most popular topics in current studies. Pea has become the most common source for plant-based protein applications, while spirulina is the most popular algae-based protein. The emotional profile analysis showed that there was no significant association between emotions and protein categories. Our work showed that applying text mining and NLP could be useful to identify research trends in recent sensory studies. This technique can rapidly obtain and analyze a large amount of data, thus overcoming the time-consuming drawback of traditional sensory techniques." @default.
- W3207598523 created "2021-10-25" @default.
- W3207598523 creator A5004258040 @default.
- W3207598523 creator A5030804081 @default.
- W3207598523 creator A5032923277 @default.
- W3207598523 creator A5078843986 @default.
- W3207598523 creator A5086653865 @default.
- W3207598523 date "2021-10-21" @default.
- W3207598523 modified "2023-09-27" @default.
- W3207598523 title "Exploring Text Mining for Recent Consumer and Sensory Studies about Alternative Proteins" @default.
- W3207598523 cites W1529904549 @default.
- W3207598523 cites W1964533892 @default.
- W3207598523 cites W1966260113 @default.
- W3207598523 cites W1969901407 @default.
- W3207598523 cites W1977108427 @default.
- W3207598523 cites W2060527205 @default.
- W3207598523 cites W2103910316 @default.
- W3207598523 cites W2168704646 @default.
- W3207598523 cites W2304337790 @default.
- W3207598523 cites W2605450861 @default.
- W3207598523 cites W2610632189 @default.
- W3207598523 cites W2769780558 @default.
- W3207598523 cites W2914747199 @default.
- W3207598523 cites W2929782267 @default.
- W3207598523 cites W2953694699 @default.
- W3207598523 cites W2968820416 @default.
- W3207598523 cites W2978812996 @default.
- W3207598523 cites W2979924132 @default.
- W3207598523 cites W3007294284 @default.
- W3207598523 cites W3009202733 @default.
- W3207598523 cites W3011961246 @default.
- W3207598523 cites W3014048898 @default.
- W3207598523 cites W3022228209 @default.
- W3207598523 cites W3026220117 @default.
- W3207598523 cites W3034494285 @default.
- W3207598523 cites W3043448524 @default.
- W3207598523 cites W3045655083 @default.
- W3207598523 cites W3047338937 @default.
- W3207598523 cites W3049224100 @default.
- W3207598523 cites W3085537592 @default.
- W3207598523 cites W3087456866 @default.
- W3207598523 cites W3176977753 @default.
- W3207598523 cites W3191286079 @default.
- W3207598523 doi "https://doi.org/10.3390/foods10112537" @default.
- W3207598523 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8620912" @default.
- W3207598523 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34828818" @default.
- W3207598523 hasPublicationYear "2021" @default.
- W3207598523 type Work @default.
- W3207598523 sameAs 3207598523 @default.
- W3207598523 citedByCount "4" @default.
- W3207598523 countsByYear W32075985232022 @default.
- W3207598523 countsByYear W32075985232023 @default.
- W3207598523 crossrefType "journal-article" @default.
- W3207598523 hasAuthorship W3207598523A5004258040 @default.
- W3207598523 hasAuthorship W3207598523A5030804081 @default.
- W3207598523 hasAuthorship W3207598523A5032923277 @default.
- W3207598523 hasAuthorship W3207598523A5078843986 @default.
- W3207598523 hasAuthorship W3207598523A5086653865 @default.
- W3207598523 hasBestOaLocation W32075985231 @default.
- W3207598523 hasConcept C150903083 @default.
- W3207598523 hasConcept C2522767166 @default.
- W3207598523 hasConcept C41008148 @default.
- W3207598523 hasConcept C86803240 @default.
- W3207598523 hasConceptScore W3207598523C150903083 @default.
- W3207598523 hasConceptScore W3207598523C2522767166 @default.
- W3207598523 hasConceptScore W3207598523C41008148 @default.
- W3207598523 hasConceptScore W3207598523C86803240 @default.
- W3207598523 hasIssue "11" @default.
- W3207598523 hasLocation W32075985231 @default.
- W3207598523 hasLocation W32075985232 @default.
- W3207598523 hasLocation W32075985233 @default.
- W3207598523 hasLocation W32075985234 @default.
- W3207598523 hasOpenAccess W3207598523 @default.
- W3207598523 hasPrimaryLocation W32075985231 @default.
- W3207598523 hasRelatedWork W1596801655 @default.
- W3207598523 hasRelatedWork W2130043461 @default.
- W3207598523 hasRelatedWork W2350741829 @default.
- W3207598523 hasRelatedWork W2358668433 @default.
- W3207598523 hasRelatedWork W2376932109 @default.
- W3207598523 hasRelatedWork W2382290278 @default.
- W3207598523 hasRelatedWork W2390279801 @default.
- W3207598523 hasRelatedWork W2748952813 @default.
- W3207598523 hasRelatedWork W2899084033 @default.
- W3207598523 hasRelatedWork W2530322880 @default.
- W3207598523 hasVolume "10" @default.
- W3207598523 isParatext "false" @default.
- W3207598523 isRetracted "false" @default.
- W3207598523 magId "3207598523" @default.
- W3207598523 workType "article" @default.