Matches in SemOpenAlex for { <https://semopenalex.org/work/W3207627821> ?p ?o ?g. }
- W3207627821 endingPage "6773" @default.
- W3207627821 startingPage "6773" @default.
- W3207627821 abstract "Renewable Energy Sources provide a viable solution to the problem of ever-increasing climate change. For this reason, several countries focus on electricity production using alternative sources. In this paper, the optimal positioning of the installation of wave energy converters is examined taking into account geospatial and technical limitations. Geospatial constraints depend on Land Use classes and seagrass of the coastal areas, while technical limitations include meteorological conditions and the morphology of the seabed. Suitable installation areas are selected after the exclusion of points that do not meet the aforementioned restrictions. We implemented a Deep Neural Network that operates based on heterogeneous data fusion, in this case satellite images and time series of meteorological data. This fact implies the definition of a two-branches architecture. The branch that is trained with image data provides for the localization of dynamic geospatial classes in the potential installation area, whereas the second one is responsible for the classification of the region according to the potential wave energy using wave height and period time series. In making the final decision on the suitability of the potential area, a large number of static land use data play an important role. These data are combined with neural network predictions for the optimizing positioning of the Wave Energy Converters. For the sake of completeness and flexibility, a Multi-Task Neural Network is developed. This model, in addition to predicting the suitability of an area depending on seagrass patterns and wave energy, also predicts land use classes through Multi-Label classification process. The proposed methodology is applied in the marine area of the city of Sines, Portugal. The first neural network achieves 98.7% Binary Classification accuracy, while the Multi-Task Neural Network 97.5% in the same metric and 93.5% in the F1 score of the Multi-Label classification output." @default.
- W3207627821 created "2021-10-25" @default.
- W3207627821 creator A5038527959 @default.
- W3207627821 creator A5041917047 @default.
- W3207627821 creator A5087509760 @default.
- W3207627821 date "2021-10-17" @default.
- W3207627821 modified "2023-10-05" @default.
- W3207627821 title "A Deep Learning and GIS Approach for the Optimal Positioning of Wave Energy Converters" @default.
- W3207627821 cites W1986512781 @default.
- W3207627821 cites W1994607196 @default.
- W3207627821 cites W2008232642 @default.
- W3207627821 cites W2008325841 @default.
- W3207627821 cites W2009801266 @default.
- W3207627821 cites W2011866185 @default.
- W3207627821 cites W2032545650 @default.
- W3207627821 cites W2038281400 @default.
- W3207627821 cites W2074579132 @default.
- W3207627821 cites W2147800946 @default.
- W3207627821 cites W2162950292 @default.
- W3207627821 cites W2170505850 @default.
- W3207627821 cites W2586078646 @default.
- W3207627821 cites W2598525681 @default.
- W3207627821 cites W2809254203 @default.
- W3207627821 cites W2886041340 @default.
- W3207627821 cites W2889590147 @default.
- W3207627821 cites W2890784921 @default.
- W3207627821 cites W2892035503 @default.
- W3207627821 cites W2905802433 @default.
- W3207627821 cites W2917443518 @default.
- W3207627821 cites W2953027717 @default.
- W3207627821 cites W2991279866 @default.
- W3207627821 cites W2999889194 @default.
- W3207627821 cites W3002236958 @default.
- W3207627821 cites W3005627114 @default.
- W3207627821 cites W3011147769 @default.
- W3207627821 cites W3011560410 @default.
- W3207627821 cites W3136018460 @default.
- W3207627821 cites W3140596840 @default.
- W3207627821 cites W3158587206 @default.
- W3207627821 doi "https://doi.org/10.3390/en14206773" @default.
- W3207627821 hasPublicationYear "2021" @default.
- W3207627821 type Work @default.
- W3207627821 sameAs 3207627821 @default.
- W3207627821 citedByCount "1" @default.
- W3207627821 countsByYear W32076278212022 @default.
- W3207627821 crossrefType "journal-article" @default.
- W3207627821 hasAuthorship W3207627821A5038527959 @default.
- W3207627821 hasAuthorship W3207627821A5041917047 @default.
- W3207627821 hasAuthorship W3207627821A5087509760 @default.
- W3207627821 hasBestOaLocation W32076278211 @default.
- W3207627821 hasConcept C105795698 @default.
- W3207627821 hasConcept C111919701 @default.
- W3207627821 hasConcept C119599485 @default.
- W3207627821 hasConcept C124101348 @default.
- W3207627821 hasConcept C127413603 @default.
- W3207627821 hasConcept C13736549 @default.
- W3207627821 hasConcept C147176958 @default.
- W3207627821 hasConcept C154945302 @default.
- W3207627821 hasConcept C188573790 @default.
- W3207627821 hasConcept C205649164 @default.
- W3207627821 hasConcept C2780598303 @default.
- W3207627821 hasConcept C2780648208 @default.
- W3207627821 hasConcept C33923547 @default.
- W3207627821 hasConcept C33954974 @default.
- W3207627821 hasConcept C41008148 @default.
- W3207627821 hasConcept C41856607 @default.
- W3207627821 hasConcept C4792198 @default.
- W3207627821 hasConcept C50644808 @default.
- W3207627821 hasConcept C62649853 @default.
- W3207627821 hasConcept C9770341 @default.
- W3207627821 hasConcept C98045186 @default.
- W3207627821 hasConceptScore W3207627821C105795698 @default.
- W3207627821 hasConceptScore W3207627821C111919701 @default.
- W3207627821 hasConceptScore W3207627821C119599485 @default.
- W3207627821 hasConceptScore W3207627821C124101348 @default.
- W3207627821 hasConceptScore W3207627821C127413603 @default.
- W3207627821 hasConceptScore W3207627821C13736549 @default.
- W3207627821 hasConceptScore W3207627821C147176958 @default.
- W3207627821 hasConceptScore W3207627821C154945302 @default.
- W3207627821 hasConceptScore W3207627821C188573790 @default.
- W3207627821 hasConceptScore W3207627821C205649164 @default.
- W3207627821 hasConceptScore W3207627821C2780598303 @default.
- W3207627821 hasConceptScore W3207627821C2780648208 @default.
- W3207627821 hasConceptScore W3207627821C33923547 @default.
- W3207627821 hasConceptScore W3207627821C33954974 @default.
- W3207627821 hasConceptScore W3207627821C41008148 @default.
- W3207627821 hasConceptScore W3207627821C41856607 @default.
- W3207627821 hasConceptScore W3207627821C4792198 @default.
- W3207627821 hasConceptScore W3207627821C50644808 @default.
- W3207627821 hasConceptScore W3207627821C62649853 @default.
- W3207627821 hasConceptScore W3207627821C9770341 @default.
- W3207627821 hasConceptScore W3207627821C98045186 @default.
- W3207627821 hasIssue "20" @default.
- W3207627821 hasLocation W32076278211 @default.
- W3207627821 hasLocation W32076278212 @default.
- W3207627821 hasOpenAccess W3207627821 @default.
- W3207627821 hasPrimaryLocation W32076278211 @default.
- W3207627821 hasRelatedWork W2081881185 @default.