Matches in SemOpenAlex for { <https://semopenalex.org/work/W3207635124> ?p ?o ?g. }
- W3207635124 endingPage "777" @default.
- W3207635124 startingPage "777" @default.
- W3207635124 abstract "We propose and assess an alternative quantum generator architecture in the context of generative adversarial learning for Monte Carlo event generation, used to simulate particle physics processes at the Large Hadron Collider (LHC). We validate this methodology by implementing the quantum network on artificial data generated from known underlying distributions. The network is then applied to Monte Carlo-generated datasets of specific LHC scattering processes. The new quantum generator architecture leads to a generalization of the state-of-the-art implementations, achieving smaller Kullback-Leibler divergences even with shallow-depth networks. Moreover, the quantum generator successfully learns the underlying distribution functions even if trained with small training sample sets; this is particularly interesting for data augmentation applications. We deploy this novel methodology on two different quantum hardware architectures, trapped-ion and superconducting technologies, to test its hardware-independent viability." @default.
- W3207635124 created "2021-10-25" @default.
- W3207635124 creator A5005335112 @default.
- W3207635124 creator A5015303234 @default.
- W3207635124 creator A5027146543 @default.
- W3207635124 creator A5033769235 @default.
- W3207635124 creator A5043268931 @default.
- W3207635124 creator A5053954438 @default.
- W3207635124 date "2022-08-17" @default.
- W3207635124 modified "2023-10-16" @default.
- W3207635124 title "Style-based quantum generative adversarial networks for Monte Carlo events" @default.
- W3207635124 cites W1492999010 @default.
- W3207635124 cites W1965555277 @default.
- W3207635124 cites W1981783889 @default.
- W3207635124 cites W2082137964 @default.
- W3207635124 cites W2103956991 @default.
- W3207635124 cites W2110999179 @default.
- W3207635124 cites W2559394418 @default.
- W3207635124 cites W2607956695 @default.
- W3207635124 cites W2781738013 @default.
- W3207635124 cites W2784994528 @default.
- W3207635124 cites W2796293949 @default.
- W3207635124 cites W2798434869 @default.
- W3207635124 cites W2798535978 @default.
- W3207635124 cites W2798945316 @default.
- W3207635124 cites W2798967590 @default.
- W3207635124 cites W2807314033 @default.
- W3207635124 cites W2888774813 @default.
- W3207635124 cites W2926552232 @default.
- W3207635124 cites W2949863591 @default.
- W3207635124 cites W2950205552 @default.
- W3207635124 cites W2952384119 @default.
- W3207635124 cites W2956718876 @default.
- W3207635124 cites W2963942586 @default.
- W3207635124 cites W3034762567 @default.
- W3207635124 cites W3075559820 @default.
- W3207635124 cites W3083278355 @default.
- W3207635124 cites W3096335005 @default.
- W3207635124 cites W3096831136 @default.
- W3207635124 cites W3097990818 @default.
- W3207635124 cites W3098599423 @default.
- W3207635124 cites W3098731057 @default.
- W3207635124 cites W3100806676 @default.
- W3207635124 cites W3101122608 @default.
- W3207635124 cites W3101355774 @default.
- W3207635124 cites W3101427288 @default.
- W3207635124 cites W3101479050 @default.
- W3207635124 cites W3105870134 @default.
- W3207635124 cites W3106984071 @default.
- W3207635124 cites W3109311724 @default.
- W3207635124 cites W3110594610 @default.
- W3207635124 cites W3121383614 @default.
- W3207635124 cites W3126366362 @default.
- W3207635124 cites W3127316317 @default.
- W3207635124 cites W3154003520 @default.
- W3207635124 cites W3158295928 @default.
- W3207635124 cites W3158633919 @default.
- W3207635124 cites W3158703662 @default.
- W3207635124 cites W3170550558 @default.
- W3207635124 cites W3171439077 @default.
- W3207635124 cites W3189250281 @default.
- W3207635124 cites W3194765666 @default.
- W3207635124 cites W3198096180 @default.
- W3207635124 cites W3209612530 @default.
- W3207635124 cites W3213245434 @default.
- W3207635124 cites W4210318870 @default.
- W3207635124 cites W4213212652 @default.
- W3207635124 cites W4225095194 @default.
- W3207635124 cites W4226348722 @default.
- W3207635124 cites W4287549634 @default.
- W3207635124 cites W4382116971 @default.
- W3207635124 doi "https://doi.org/10.22331/q-2022-08-17-777" @default.
- W3207635124 hasPublicationYear "2022" @default.
- W3207635124 type Work @default.
- W3207635124 sameAs 3207635124 @default.
- W3207635124 citedByCount "7" @default.
- W3207635124 countsByYear W32076351242022 @default.
- W3207635124 countsByYear W32076351242023 @default.
- W3207635124 crossrefType "journal-article" @default.
- W3207635124 hasAuthorship W3207635124A5005335112 @default.
- W3207635124 hasAuthorship W3207635124A5015303234 @default.
- W3207635124 hasAuthorship W3207635124A5027146543 @default.
- W3207635124 hasAuthorship W3207635124A5033769235 @default.
- W3207635124 hasAuthorship W3207635124A5043268931 @default.
- W3207635124 hasAuthorship W3207635124A5053954438 @default.
- W3207635124 hasBestOaLocation W32076351241 @default.
- W3207635124 hasConcept C105795698 @default.
- W3207635124 hasConcept C109214941 @default.
- W3207635124 hasConcept C113775141 @default.
- W3207635124 hasConcept C121332964 @default.
- W3207635124 hasConcept C134306372 @default.
- W3207635124 hasConcept C151730666 @default.
- W3207635124 hasConcept C154945302 @default.
- W3207635124 hasConcept C163258240 @default.
- W3207635124 hasConcept C177148314 @default.
- W3207635124 hasConcept C19499675 @default.
- W3207635124 hasConcept C2779343474 @default.
- W3207635124 hasConcept C2780992000 @default.