Matches in SemOpenAlex for { <https://semopenalex.org/work/W3207637322> ?p ?o ?g. }
- W3207637322 endingPage "6996" @default.
- W3207637322 startingPage "6996" @default.
- W3207637322 abstract "Sky and ground are two essential semantic components in computer vision, robotics, and remote sensing. The sky and ground segmentation has become increasingly popular. This research proposes a sky and ground segmentation framework for the rover navigation visions by adopting weak supervision and transfer learning technologies. A new sky and ground segmentation neural network (network in U-shaped network (NI-U-Net)) and a conservative annotation method have been proposed. The pre-trained process achieves the best results on a popular open benchmark (the Skyfinder dataset) by evaluating seven metrics compared to the state-of-the-art. These seven metrics achieve 99.232%, 99.211%, 99.221%, 99.104%, 0.0077, 0.0427, and 98.223% on accuracy, precision, recall, dice score (F1), misclassification rate (MCR), root mean squared error (RMSE), and intersection over union (IoU), respectively. The conservative annotation method achieves superior performance with limited manual intervention. The NI-U-Net can operate with 40 frames per second (FPS) to maintain the real-time property. The proposed framework successfully fills the gap between the laboratory results (with rich idea data) and the practical application (in the wild). The achievement can provide essential semantic information (sky and ground) for the rover navigation vision." @default.
- W3207637322 created "2021-10-25" @default.
- W3207637322 creator A5042555318 @default.
- W3207637322 creator A5087731729 @default.
- W3207637322 creator A5087776010 @default.
- W3207637322 date "2021-10-21" @default.
- W3207637322 modified "2023-10-14" @default.
- W3207637322 title "Sky and Ground Segmentation in the Navigation Visions of the Planetary Rovers" @default.
- W3207637322 cites W1999318832 @default.
- W3207637322 cites W2018501701 @default.
- W3207637322 cites W2062190575 @default.
- W3207637322 cites W2083366168 @default.
- W3207637322 cites W2083597815 @default.
- W3207637322 cites W2097536167 @default.
- W3207637322 cites W2100495367 @default.
- W3207637322 cites W2110764733 @default.
- W3207637322 cites W2138215666 @default.
- W3207637322 cites W2155871590 @default.
- W3207637322 cites W2340897893 @default.
- W3207637322 cites W2467156531 @default.
- W3207637322 cites W2469078846 @default.
- W3207637322 cites W2470572484 @default.
- W3207637322 cites W2493742845 @default.
- W3207637322 cites W2535388113 @default.
- W3207637322 cites W2564885033 @default.
- W3207637322 cites W2565813159 @default.
- W3207637322 cites W2607566662 @default.
- W3207637322 cites W2609692184 @default.
- W3207637322 cites W2617945016 @default.
- W3207637322 cites W2620950432 @default.
- W3207637322 cites W2773327434 @default.
- W3207637322 cites W2789722366 @default.
- W3207637322 cites W2795076878 @default.
- W3207637322 cites W2802368751 @default.
- W3207637322 cites W2876772800 @default.
- W3207637322 cites W2884436604 @default.
- W3207637322 cites W2901333117 @default.
- W3207637322 cites W2904677257 @default.
- W3207637322 cites W2938450871 @default.
- W3207637322 cites W2949199804 @default.
- W3207637322 cites W2962943321 @default.
- W3207637322 cites W2963859992 @default.
- W3207637322 cites W2971497498 @default.
- W3207637322 cites W2983576236 @default.
- W3207637322 cites W2997226465 @default.
- W3207637322 cites W3003695061 @default.
- W3207637322 cites W3008439211 @default.
- W3207637322 cites W3008827235 @default.
- W3207637322 cites W3009942643 @default.
- W3207637322 cites W3011374674 @default.
- W3207637322 cites W3024271293 @default.
- W3207637322 cites W3035549210 @default.
- W3207637322 cites W3044075475 @default.
- W3207637322 cites W3096150952 @default.
- W3207637322 cites W3096437212 @default.
- W3207637322 cites W3105692206 @default.
- W3207637322 cites W3138678718 @default.
- W3207637322 cites W3169219815 @default.
- W3207637322 cites W3183435102 @default.
- W3207637322 cites W3194706446 @default.
- W3207637322 doi "https://doi.org/10.3390/s21216996" @default.
- W3207637322 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8588092" @default.
- W3207637322 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34770302" @default.
- W3207637322 hasPublicationYear "2021" @default.
- W3207637322 type Work @default.
- W3207637322 sameAs 3207637322 @default.
- W3207637322 citedByCount "4" @default.
- W3207637322 countsByYear W32076373222021 @default.
- W3207637322 countsByYear W32076373222022 @default.
- W3207637322 countsByYear W32076373222023 @default.
- W3207637322 crossrefType "journal-article" @default.
- W3207637322 hasAuthorship W3207637322A5042555318 @default.
- W3207637322 hasAuthorship W3207637322A5087731729 @default.
- W3207637322 hasAuthorship W3207637322A5087776010 @default.
- W3207637322 hasBestOaLocation W32076373221 @default.
- W3207637322 hasConcept C105795698 @default.
- W3207637322 hasConcept C133979268 @default.
- W3207637322 hasConcept C138885662 @default.
- W3207637322 hasConcept C139945424 @default.
- W3207637322 hasConcept C144133560 @default.
- W3207637322 hasConcept C153294291 @default.
- W3207637322 hasConcept C154945302 @default.
- W3207637322 hasConcept C162853370 @default.
- W3207637322 hasConcept C185798385 @default.
- W3207637322 hasConcept C205649164 @default.
- W3207637322 hasConcept C27206212 @default.
- W3207637322 hasConcept C31972630 @default.
- W3207637322 hasConcept C33923547 @default.
- W3207637322 hasConcept C41008148 @default.
- W3207637322 hasConcept C58640448 @default.
- W3207637322 hasConcept C62649853 @default.
- W3207637322 hasConcept C64543145 @default.
- W3207637322 hasConcept C73329638 @default.
- W3207637322 hasConcept C86251818 @default.
- W3207637322 hasConcept C89600930 @default.
- W3207637322 hasConceptScore W3207637322C105795698 @default.
- W3207637322 hasConceptScore W3207637322C133979268 @default.
- W3207637322 hasConceptScore W3207637322C138885662 @default.