Matches in SemOpenAlex for { <https://semopenalex.org/work/W3207657134> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W3207657134 abstract "The near-data processing (NDP) paradigm has emerged as a promising solution for the memory wall challenges of future computing architectures. Modern 3D-stacked DRAM systems can be exploited to prevent unnecessary data movement between the main memory and the CPU. To date, no standardized simulation frameworks or benchmarks are available for the systematic evaluation of NDP systems. Identifying which type of high-performance 3D memory is suitable to use in an NDP system remains a challenge. This is mainly due to the fact that understanding the interactions between modern workloads and the memory subsystem is not a trivial task. Each memory type has its advantages and drawbacks. Additionally, memory access patterns vary greatly across applications. As a result, the performance of a given application on a given memory type is difficult to intuitively predict. There is no specific memory type that can effectively provide high performance for all applications.In this work, we propose a machine learning framework that can efficiently decide which NDP system is suitable for an application. The framework relies on performance prediction based on an input set of application characteristics. For each NDP system we are examining, we build a machine learning model that can accurately predict performance of previously unseen applications on this system. Our models are on average 200x faster than architectural simulation. They can accurately predict performance with coefficients of determination ranging between 0.88 and 0.92, and root mean square errors ranging between 0.08 and 0.19." @default.
- W3207657134 created "2021-10-25" @default.
- W3207657134 creator A5032864443 @default.
- W3207657134 creator A5039330377 @default.
- W3207657134 creator A5055685692 @default.
- W3207657134 date "2021-09-01" @default.
- W3207657134 modified "2023-10-01" @default.
- W3207657134 title "Near-Data-Processing Architectures Performance Estimation and Ranking using Machine Learning Predictors" @default.
- W3207657134 cites W1837798711 @default.
- W3207657134 cites W1964817316 @default.
- W3207657134 cites W1981943579 @default.
- W3207657134 cites W2027917818 @default.
- W3207657134 cites W2034393433 @default.
- W3207657134 cites W2034861439 @default.
- W3207657134 cites W2038666141 @default.
- W3207657134 cites W2054589004 @default.
- W3207657134 cites W2086112773 @default.
- W3207657134 cites W2099305970 @default.
- W3207657134 cites W2101234009 @default.
- W3207657134 cites W2107749816 @default.
- W3207657134 cites W2108177987 @default.
- W3207657134 cites W2113235308 @default.
- W3207657134 cites W2121288477 @default.
- W3207657134 cites W2147657366 @default.
- W3207657134 cites W2153185479 @default.
- W3207657134 cites W2158924248 @default.
- W3207657134 cites W2171195786 @default.
- W3207657134 cites W2341733367 @default.
- W3207657134 cites W2576871107 @default.
- W3207657134 cites W2730293055 @default.
- W3207657134 cites W2767210617 @default.
- W3207657134 cites W2776892412 @default.
- W3207657134 cites W2789554134 @default.
- W3207657134 cites W2944576035 @default.
- W3207657134 cites W2946037574 @default.
- W3207657134 cites W2955563193 @default.
- W3207657134 cites W2981639564 @default.
- W3207657134 cites W3043023836 @default.
- W3207657134 cites W3115226260 @default.
- W3207657134 cites W3159011214 @default.
- W3207657134 doi "https://doi.org/10.1109/dsd53832.2021.00033" @default.
- W3207657134 hasPublicationYear "2021" @default.
- W3207657134 type Work @default.
- W3207657134 sameAs 3207657134 @default.
- W3207657134 citedByCount "0" @default.
- W3207657134 crossrefType "proceedings-article" @default.
- W3207657134 hasAuthorship W3207657134A5032864443 @default.
- W3207657134 hasAuthorship W3207657134A5039330377 @default.
- W3207657134 hasAuthorship W3207657134A5055685692 @default.
- W3207657134 hasConcept C113775141 @default.
- W3207657134 hasConcept C115051666 @default.
- W3207657134 hasConcept C119857082 @default.
- W3207657134 hasConcept C154945302 @default.
- W3207657134 hasConcept C162324750 @default.
- W3207657134 hasConcept C177264268 @default.
- W3207657134 hasConcept C187736073 @default.
- W3207657134 hasConcept C189430467 @default.
- W3207657134 hasConcept C199360897 @default.
- W3207657134 hasConcept C2777115002 @default.
- W3207657134 hasConcept C2780451532 @default.
- W3207657134 hasConcept C41008148 @default.
- W3207657134 hasConcept C44154836 @default.
- W3207657134 hasConcept C7366592 @default.
- W3207657134 hasConcept C76155785 @default.
- W3207657134 hasConcept C9390403 @default.
- W3207657134 hasConceptScore W3207657134C113775141 @default.
- W3207657134 hasConceptScore W3207657134C115051666 @default.
- W3207657134 hasConceptScore W3207657134C119857082 @default.
- W3207657134 hasConceptScore W3207657134C154945302 @default.
- W3207657134 hasConceptScore W3207657134C162324750 @default.
- W3207657134 hasConceptScore W3207657134C177264268 @default.
- W3207657134 hasConceptScore W3207657134C187736073 @default.
- W3207657134 hasConceptScore W3207657134C189430467 @default.
- W3207657134 hasConceptScore W3207657134C199360897 @default.
- W3207657134 hasConceptScore W3207657134C2777115002 @default.
- W3207657134 hasConceptScore W3207657134C2780451532 @default.
- W3207657134 hasConceptScore W3207657134C41008148 @default.
- W3207657134 hasConceptScore W3207657134C44154836 @default.
- W3207657134 hasConceptScore W3207657134C7366592 @default.
- W3207657134 hasConceptScore W3207657134C76155785 @default.
- W3207657134 hasConceptScore W3207657134C9390403 @default.
- W3207657134 hasLocation W32076571341 @default.
- W3207657134 hasOpenAccess W3207657134 @default.
- W3207657134 hasPrimaryLocation W32076571341 @default.
- W3207657134 hasRelatedWork W1509467138 @default.
- W3207657134 hasRelatedWork W2885770764 @default.
- W3207657134 hasRelatedWork W2961085424 @default.
- W3207657134 hasRelatedWork W3097023354 @default.
- W3207657134 hasRelatedWork W3204116716 @default.
- W3207657134 hasRelatedWork W3207657134 @default.
- W3207657134 hasRelatedWork W4286629047 @default.
- W3207657134 hasRelatedWork W4306321456 @default.
- W3207657134 hasRelatedWork W4306674287 @default.
- W3207657134 hasRelatedWork W4224009465 @default.
- W3207657134 isParatext "false" @default.
- W3207657134 isRetracted "false" @default.
- W3207657134 magId "3207657134" @default.
- W3207657134 workType "article" @default.