Matches in SemOpenAlex for { <https://semopenalex.org/work/W3207702024> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W3207702024 endingPage "6055" @default.
- W3207702024 startingPage "6041" @default.
- W3207702024 abstract "This research work proposes a new stack-based generalization ensemble model to forecast the number of incidences of conjunctivitis disease. In addition to forecasting the occurrences of conjunctivitis incidences, the proposed model also improves performance by using the ensemble model. Weekly rate of acute Conjunctivitis per 1000 for Hong Kong is collected for the duration of the first week of January 2010 to the last week of December 2019. Pre-processing techniques such as imputation of missing values and logarithmic transformation are applied to pre-process the data sets. A stacked generalization ensemble model based on Auto-ARIMA (Autoregressive Integrated Moving Average), NNAR (Neural Network Autoregression), ETS (Exponential Smoothing), HW (Holt Winter) is proposed and applied on the dataset. Predictive analysis is conducted on the collected dataset of conjunctivitis disease, and further compared for different performance measures. The result shows that the RMSE (Root Mean Square Error), MAE (Mean Absolute Error), MAPE (Mean Absolute Percentage Error), ACF1 (Auto Correlation Function) of the proposed ensemble is decreased significantly. Considering the RMSE, for instance, error values are reduced by 39.23%, 9.13%, 20.42%, and 17.13% in comparison to Auto-ARIMA, NAR, ETS, and HW model respectively. This research concludes that the accuracy of the forecasting of diseases can be significantly increased by applying the proposed stack generalization ensemble model as it minimizes the prediction error and hence provides better prediction trends as compared to Auto-ARIMA, NAR, ETS, and HW model applied discretely" @default.
- W3207702024 created "2021-10-25" @default.
- W3207702024 creator A5008629839 @default.
- W3207702024 creator A5020042595 @default.
- W3207702024 creator A5031798370 @default.
- W3207702024 creator A5037101165 @default.
- W3207702024 creator A5042235158 @default.
- W3207702024 creator A5074405334 @default.
- W3207702024 creator A5079524430 @default.
- W3207702024 creator A5081113763 @default.
- W3207702024 date "2022-01-01" @default.
- W3207702024 modified "2023-10-18" @default.
- W3207702024 title "An Intelligent Forecasting Model for Disease Prediction Using Stack Ensembling Approach" @default.
- W3207702024 cites W2158615050 @default.
- W3207702024 cites W2182471921 @default.
- W3207702024 cites W2187607081 @default.
- W3207702024 cites W2244486986 @default.
- W3207702024 cites W2583091440 @default.
- W3207702024 cites W2799286067 @default.
- W3207702024 cites W2943526108 @default.
- W3207702024 cites W2949846539 @default.
- W3207702024 cites W2992607180 @default.
- W3207702024 cites W2999628013 @default.
- W3207702024 cites W3044995911 @default.
- W3207702024 cites W3093778016 @default.
- W3207702024 cites W3105180066 @default.
- W3207702024 cites W3118561000 @default.
- W3207702024 cites W3150593357 @default.
- W3207702024 cites W3163874301 @default.
- W3207702024 doi "https://doi.org/10.32604/cmc.2022.021747" @default.
- W3207702024 hasPublicationYear "2022" @default.
- W3207702024 type Work @default.
- W3207702024 sameAs 3207702024 @default.
- W3207702024 citedByCount "1" @default.
- W3207702024 countsByYear W32077020242023 @default.
- W3207702024 crossrefType "journal-article" @default.
- W3207702024 hasAuthorship W3207702024A5008629839 @default.
- W3207702024 hasAuthorship W3207702024A5020042595 @default.
- W3207702024 hasAuthorship W3207702024A5031798370 @default.
- W3207702024 hasAuthorship W3207702024A5037101165 @default.
- W3207702024 hasAuthorship W3207702024A5042235158 @default.
- W3207702024 hasAuthorship W3207702024A5074405334 @default.
- W3207702024 hasAuthorship W3207702024A5079524430 @default.
- W3207702024 hasAuthorship W3207702024A5081113763 @default.
- W3207702024 hasBestOaLocation W32077020241 @default.
- W3207702024 hasConcept C105795698 @default.
- W3207702024 hasConcept C119898033 @default.
- W3207702024 hasConcept C133710760 @default.
- W3207702024 hasConcept C134306372 @default.
- W3207702024 hasConcept C139945424 @default.
- W3207702024 hasConcept C150217764 @default.
- W3207702024 hasConcept C151406439 @default.
- W3207702024 hasConcept C154945302 @default.
- W3207702024 hasConcept C159877910 @default.
- W3207702024 hasConcept C177148314 @default.
- W3207702024 hasConcept C24338571 @default.
- W3207702024 hasConcept C33923547 @default.
- W3207702024 hasConcept C41008148 @default.
- W3207702024 hasConcept C50644808 @default.
- W3207702024 hasConceptScore W3207702024C105795698 @default.
- W3207702024 hasConceptScore W3207702024C119898033 @default.
- W3207702024 hasConceptScore W3207702024C133710760 @default.
- W3207702024 hasConceptScore W3207702024C134306372 @default.
- W3207702024 hasConceptScore W3207702024C139945424 @default.
- W3207702024 hasConceptScore W3207702024C150217764 @default.
- W3207702024 hasConceptScore W3207702024C151406439 @default.
- W3207702024 hasConceptScore W3207702024C154945302 @default.
- W3207702024 hasConceptScore W3207702024C159877910 @default.
- W3207702024 hasConceptScore W3207702024C177148314 @default.
- W3207702024 hasConceptScore W3207702024C24338571 @default.
- W3207702024 hasConceptScore W3207702024C33923547 @default.
- W3207702024 hasConceptScore W3207702024C41008148 @default.
- W3207702024 hasConceptScore W3207702024C50644808 @default.
- W3207702024 hasIssue "3" @default.
- W3207702024 hasLocation W32077020241 @default.
- W3207702024 hasOpenAccess W3207702024 @default.
- W3207702024 hasPrimaryLocation W32077020241 @default.
- W3207702024 hasRelatedWork W2305568609 @default.
- W3207702024 hasRelatedWork W2550089990 @default.
- W3207702024 hasRelatedWork W2770456714 @default.
- W3207702024 hasRelatedWork W2782187199 @default.
- W3207702024 hasRelatedWork W2942268442 @default.
- W3207702024 hasRelatedWork W3080840844 @default.
- W3207702024 hasRelatedWork W3159654789 @default.
- W3207702024 hasRelatedWork W3207702024 @default.
- W3207702024 hasRelatedWork W4200437383 @default.
- W3207702024 hasRelatedWork W4382466809 @default.
- W3207702024 hasVolume "70" @default.
- W3207702024 isParatext "false" @default.
- W3207702024 isRetracted "false" @default.
- W3207702024 magId "3207702024" @default.
- W3207702024 workType "article" @default.