Matches in SemOpenAlex for { <https://semopenalex.org/work/W3207723747> ?p ?o ?g. }
- W3207723747 endingPage "126405" @default.
- W3207723747 startingPage "126405" @default.
- W3207723747 abstract "Nitrogen is an essential element of wheat growth and grain quality. Leaf nitrogen content (LNC), a critical monitoring indicator of crop nitrogen status, plays a reference role for later estimations of grain protein content (GPC). Developments in unmanned aerial vehicle (UAV) platforms and multispectral sensors have provided new approaches for LNC monitoring and GPC estimation, with great convenience for assessing the nutritional status of plants and grains without traditional destructive sampling. The objective of this study was to evaluate the feasibility of wheat LNC monitoring and GPC estimation based on UAV multispectral imagery. Wheat experiments were carried out in Xinghua, Kunshan and Suining of Jiangsu Province during 2018−2019 and in Rugao of Jiangsu Province during 2020−2021 with different varieties and nitrogen application rates. Remote sensing images were obtained by a multi-rotor UAV carrying a multispectral camera. The destructive sampling method was used to collect LNC, GPC and other field data. Wheat LNC monitoring and GPC estimation models were established after selection of the optimal indicators. Different modelling methods were used for the comparative analysis, including unitary linear regression, multiple linear regression and artificial neural network (ANN) methods. Three techniques were adopted to improve the GPC prediction accuracy: (1) multiple factors were substituted for single factor for the prediction; (2) texture information was added through further imagery mining; and (3) ecological factors were considered to improve the prediction mechanism. The results showed that the use of UAV-based Airphen multispectral imagery had a good effect on wheat LNC monitoring and GPC estimation. The vegetation indices constructed by red-edge and near-infrared bands had good performances in LNC monitoring and GPC estimation. The addition of texture information and ecological factors further improved the modelling accuracy. In this study, the optimal wheat GPC estimation model was established by NDVI (675, 730) at the jointing stage, NDVIT (730mea., 850) at the booting stage, NDVIT (730mea., 850) at the flowering stage and NDVI (730, 850) at the early filling stage. The modelling R2, validation R2 and relative root mean square error (RRMSE) reached 0.662, 0.7445 and 0.0635, respectively. The results provide a reference for crop LNC monitoring and GPC estimation based on UAV multispectral imagery." @default.
- W3207723747 created "2021-10-25" @default.
- W3207723747 creator A5000071336 @default.
- W3207723747 creator A5017022122 @default.
- W3207723747 creator A5042233095 @default.
- W3207723747 creator A5047305300 @default.
- W3207723747 creator A5054459584 @default.
- W3207723747 creator A5058913315 @default.
- W3207723747 creator A5065229969 @default.
- W3207723747 creator A5067280628 @default.
- W3207723747 creator A5075923985 @default.
- W3207723747 creator A5087174663 @default.
- W3207723747 date "2022-01-01" @default.
- W3207723747 modified "2023-10-12" @default.
- W3207723747 title "Combining UAV multispectral imagery and ecological factors to estimate leaf nitrogen and grain protein content of wheat" @default.
- W3207723747 cites W1971798222 @default.
- W3207723747 cites W1982719012 @default.
- W3207723747 cites W1987352360 @default.
- W3207723747 cites W1991360699 @default.
- W3207723747 cites W1999068520 @default.
- W3207723747 cites W2000675427 @default.
- W3207723747 cites W2004598447 @default.
- W3207723747 cites W2008183703 @default.
- W3207723747 cites W2011520866 @default.
- W3207723747 cites W2015613423 @default.
- W3207723747 cites W2022591200 @default.
- W3207723747 cites W2023974265 @default.
- W3207723747 cites W2024933837 @default.
- W3207723747 cites W2025571449 @default.
- W3207723747 cites W2034782076 @default.
- W3207723747 cites W2041466618 @default.
- W3207723747 cites W2044465660 @default.
- W3207723747 cites W2045297017 @default.
- W3207723747 cites W2053678867 @default.
- W3207723747 cites W2057891673 @default.
- W3207723747 cites W2059488281 @default.
- W3207723747 cites W2066788285 @default.
- W3207723747 cites W2076641727 @default.
- W3207723747 cites W2079842406 @default.
- W3207723747 cites W2098630016 @default.
- W3207723747 cites W2098688983 @default.
- W3207723747 cites W2104487864 @default.
- W3207723747 cites W2134281019 @default.
- W3207723747 cites W2135752545 @default.
- W3207723747 cites W2162600997 @default.
- W3207723747 cites W2162842531 @default.
- W3207723747 cites W2176972851 @default.
- W3207723747 cites W2282242249 @default.
- W3207723747 cites W2306416935 @default.
- W3207723747 cites W2434491766 @default.
- W3207723747 cites W2469630252 @default.
- W3207723747 cites W2474526276 @default.
- W3207723747 cites W2593248160 @default.
- W3207723747 cites W2742556652 @default.
- W3207723747 cites W2748917386 @default.
- W3207723747 cites W2754959007 @default.
- W3207723747 cites W2768005555 @default.
- W3207723747 cites W2774550616 @default.
- W3207723747 cites W2788221611 @default.
- W3207723747 cites W2883137702 @default.
- W3207723747 cites W2891621712 @default.
- W3207723747 cites W2892129995 @default.
- W3207723747 cites W2901594778 @default.
- W3207723747 cites W2920653747 @default.
- W3207723747 cites W2931610124 @default.
- W3207723747 cites W2947820157 @default.
- W3207723747 cites W2964415981 @default.
- W3207723747 cites W2965019906 @default.
- W3207723747 cites W2978860639 @default.
- W3207723747 cites W2996041315 @default.
- W3207723747 cites W2997133053 @default.
- W3207723747 cites W3004170135 @default.
- W3207723747 cites W3005430388 @default.
- W3207723747 cites W3016665724 @default.
- W3207723747 cites W3022293080 @default.
- W3207723747 cites W3024663154 @default.
- W3207723747 cites W3037068037 @default.
- W3207723747 cites W3039389508 @default.
- W3207723747 cites W3082941351 @default.
- W3207723747 cites W3084320300 @default.
- W3207723747 cites W3095324132 @default.
- W3207723747 cites W3112929969 @default.
- W3207723747 cites W3146990693 @default.
- W3207723747 cites W3151699197 @default.
- W3207723747 cites W3152977856 @default.
- W3207723747 cites W3178373045 @default.
- W3207723747 cites W3180237232 @default.
- W3207723747 cites W4245105104 @default.
- W3207723747 doi "https://doi.org/10.1016/j.eja.2021.126405" @default.
- W3207723747 hasPublicationYear "2022" @default.
- W3207723747 type Work @default.
- W3207723747 sameAs 3207723747 @default.
- W3207723747 citedByCount "30" @default.
- W3207723747 countsByYear W32077237472021 @default.
- W3207723747 countsByYear W32077237472022 @default.
- W3207723747 countsByYear W32077237472023 @default.
- W3207723747 crossrefType "journal-article" @default.
- W3207723747 hasAuthorship W3207723747A5000071336 @default.