Matches in SemOpenAlex for { <https://semopenalex.org/work/W3207731722> ?p ?o ?g. }
- W3207731722 endingPage "4029" @default.
- W3207731722 startingPage "4029" @default.
- W3207731722 abstract "Recently, researchers have realized a number of achievements involving deep-learning-based neural networks for the tasks of segmentation and detection based on 2D images, 3D point clouds, etc. Using 2D and 3D information fusion for the advantages of compensation and accuracy improvement has become a hot research topic. However, there are no critical reviews focusing on the fusion strategies of 2D and 3D information integration based on various data for segmentation and detection, which are the basic tasks of computer vision. To boost the development of this research domain, the existing representative fusion strategies are collected, introduced, categorized, and summarized in this paper. In addition, the general structures of different kinds of fusion strategies were firstly abstracted and categorized, which may inspire researchers. Moreover, according to the methods included in this paper, the 2D information and 3D information of different methods come from various kinds of data. Furthermore, suitable datasets are introduced and comparatively summarized to support the relative research. Last but not least, we put forward some open challenges and promising directions for future research." @default.
- W3207731722 created "2021-10-25" @default.
- W3207731722 creator A5010764036 @default.
- W3207731722 creator A5011839712 @default.
- W3207731722 creator A5015366653 @default.
- W3207731722 creator A5020046993 @default.
- W3207731722 creator A5043108965 @default.
- W3207731722 creator A5045319624 @default.
- W3207731722 creator A5047277352 @default.
- W3207731722 creator A5056354430 @default.
- W3207731722 creator A5061394935 @default.
- W3207731722 creator A5071660361 @default.
- W3207731722 date "2021-10-09" @default.
- W3207731722 modified "2023-10-16" @default.
- W3207731722 title "The Fusion Strategy of 2D and 3D Information Based on Deep Learning: A Review" @default.
- W3207731722 cites W1076196965 @default.
- W3207731722 cites W1536680647 @default.
- W3207731722 cites W1849277567 @default.
- W3207731722 cites W1903029394 @default.
- W3207731722 cites W1996749420 @default.
- W3207731722 cites W2027710719 @default.
- W3207731722 cites W2112796928 @default.
- W3207731722 cites W2115579991 @default.
- W3207731722 cites W2150066425 @default.
- W3207731722 cites W2194775991 @default.
- W3207731722 cites W2322480645 @default.
- W3207731722 cites W2335639764 @default.
- W3207731722 cites W2412782625 @default.
- W3207731722 cites W2565639579 @default.
- W3207731722 cites W2570343428 @default.
- W3207731722 cites W2618530766 @default.
- W3207731722 cites W2737992905 @default.
- W3207731722 cites W2791560303 @default.
- W3207731722 cites W2795014656 @default.
- W3207731722 cites W2800306924 @default.
- W3207731722 cites W2803442140 @default.
- W3207731722 cites W2807096024 @default.
- W3207731722 cites W2884367402 @default.
- W3207731722 cites W2891529090 @default.
- W3207731722 cites W2892614179 @default.
- W3207731722 cites W2897020901 @default.
- W3207731722 cites W2909381593 @default.
- W3207731722 cites W2932012013 @default.
- W3207731722 cites W2962912109 @default.
- W3207731722 cites W2963037989 @default.
- W3207731722 cites W2963278046 @default.
- W3207731722 cites W2963706542 @default.
- W3207731722 cites W2963881378 @default.
- W3207731722 cites W2964339842 @default.
- W3207731722 cites W2972225576 @default.
- W3207731722 cites W2976081675 @default.
- W3207731722 cites W2976583275 @default.
- W3207731722 cites W2979750740 @default.
- W3207731722 cites W2990026901 @default.
- W3207731722 cites W2995932445 @default.
- W3207731722 cites W2996945478 @default.
- W3207731722 cites W3000094279 @default.
- W3207731722 cites W3015235064 @default.
- W3207731722 cites W3015248322 @default.
- W3207731722 cites W3020939490 @default.
- W3207731722 cites W3021571323 @default.
- W3207731722 cites W3021999445 @default.
- W3207731722 cites W3031288689 @default.
- W3207731722 cites W3035499612 @default.
- W3207731722 cites W3035574168 @default.
- W3207731722 cites W3039448353 @default.
- W3207731722 cites W3043099088 @default.
- W3207731722 cites W3045897451 @default.
- W3207731722 cites W3081605498 @default.
- W3207731722 cites W3095986980 @default.
- W3207731722 cites W3104038589 @default.
- W3207731722 cites W3110908156 @default.
- W3207731722 cites W3117804044 @default.
- W3207731722 cites W3118635606 @default.
- W3207731722 cites W3123982987 @default.
- W3207731722 cites W3126285971 @default.
- W3207731722 cites W3130367234 @default.
- W3207731722 cites W3132455321 @default.
- W3207731722 cites W3134558160 @default.
- W3207731722 cites W3136021864 @default.
- W3207731722 cites W3181876914 @default.
- W3207731722 cites W3195869412 @default.
- W3207731722 cites W3197762829 @default.
- W3207731722 cites W3198451673 @default.
- W3207731722 cites W639708223 @default.
- W3207731722 doi "https://doi.org/10.3390/rs13204029" @default.
- W3207731722 hasPublicationYear "2021" @default.
- W3207731722 type Work @default.
- W3207731722 sameAs 3207731722 @default.
- W3207731722 citedByCount "4" @default.
- W3207731722 countsByYear W32077317222021 @default.
- W3207731722 countsByYear W32077317222022 @default.
- W3207731722 countsByYear W32077317222023 @default.
- W3207731722 crossrefType "journal-article" @default.
- W3207731722 hasAuthorship W3207731722A5010764036 @default.
- W3207731722 hasAuthorship W3207731722A5011839712 @default.
- W3207731722 hasAuthorship W3207731722A5015366653 @default.
- W3207731722 hasAuthorship W3207731722A5020046993 @default.