Matches in SemOpenAlex for { <https://semopenalex.org/work/W3207737701> ?p ?o ?g. }
- W3207737701 abstract "Identifying gene interactions is a topic of great importance in genomics, and approaches based on network models provide a powerful tool for studying these. Assuming a Gaussian graphical model, a gene association network may be estimated from multiomic data based on the non-zero entries of the inverse covariance matrix. Inferring such biological networks is challenging because of the high dimensionality of the problem, making traditional estimators unsuitable. The graphical lasso is constructed for the estimation of sparse inverse covariance matrices in such situations, using [Formula: see text]-penalization on the matrix entries. The weighted graphical lasso is an extension in which prior biological information from other sources is integrated into the model. There are however issues with this approach, as it naïvely forces the prior information into the network estimation, even if it is misleading or does not agree with the data at hand. Further, if an associated network based on other data is used as the prior, the method often fails to utilize the information effectively.We propose a novel graphical lasso approach, the tailored graphical lasso, that aims to handle prior information of unknown accuracy more effectively. We provide an R package implementing the method, tailoredGlasso. Applying the method to both simulated and real multiomic data sets, we find that it outperforms the unweighted and weighted graphical lasso in terms of all performance measures we consider. In fact, the graphical lasso and weighted graphical lasso can be considered special cases of the tailored graphical lasso, and a parameter determined by the data measures the usefulness of the prior information. We also find that among a larger set of methods, the tailored graphical is the most suitable for network inference from high-dimensional data with prior information of unknown accuracy. With our method, mRNA data are demonstrated to provide highly useful prior information for protein-protein interaction networks.The method we introduce utilizes useful prior information more effectively without involving any risk of loss of accuracy should the prior information be misleading." @default.
- W3207737701 created "2021-10-25" @default.
- W3207737701 creator A5002202521 @default.
- W3207737701 creator A5024938513 @default.
- W3207737701 creator A5048737655 @default.
- W3207737701 creator A5077821870 @default.
- W3207737701 creator A5082508483 @default.
- W3207737701 date "2021-10-15" @default.
- W3207737701 modified "2023-10-06" @default.
- W3207737701 title "Tailored graphical lasso for data integration in gene network reconstruction" @default.
- W3207737701 cites W1578530776 @default.
- W3207737701 cites W1981509058 @default.
- W3207737701 cites W1985651808 @default.
- W3207737701 cites W2001334414 @default.
- W3207737701 cites W2015162003 @default.
- W3207737701 cites W2018747370 @default.
- W3207737701 cites W2032894034 @default.
- W3207737701 cites W2049058758 @default.
- W3207737701 cites W2049901047 @default.
- W3207737701 cites W2055754079 @default.
- W3207737701 cites W2069313265 @default.
- W3207737701 cites W2074089196 @default.
- W3207737701 cites W2096283457 @default.
- W3207737701 cites W2100239923 @default.
- W3207737701 cites W2111384508 @default.
- W3207737701 cites W2112331024 @default.
- W3207737701 cites W2117994680 @default.
- W3207737701 cites W2120989152 @default.
- W3207737701 cites W2123270810 @default.
- W3207737701 cites W2132555912 @default.
- W3207737701 cites W2134885709 @default.
- W3207737701 cites W2166667584 @default.
- W3207737701 cites W2168546553 @default.
- W3207737701 cites W2345340625 @default.
- W3207737701 cites W2486096428 @default.
- W3207737701 cites W2586275266 @default.
- W3207737701 cites W2772435237 @default.
- W3207737701 cites W2782573192 @default.
- W3207737701 cites W2790063660 @default.
- W3207737701 cites W2900569176 @default.
- W3207737701 cites W2910124299 @default.
- W3207737701 cites W3028304854 @default.
- W3207737701 doi "https://doi.org/10.1186/s12859-021-04413-z" @default.
- W3207737701 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8518261" @default.
- W3207737701 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34654363" @default.
- W3207737701 hasPublicationYear "2021" @default.
- W3207737701 type Work @default.
- W3207737701 sameAs 3207737701 @default.
- W3207737701 citedByCount "1" @default.
- W3207737701 countsByYear W32077377012023 @default.
- W3207737701 crossrefType "journal-article" @default.
- W3207737701 hasAuthorship W3207737701A5002202521 @default.
- W3207737701 hasAuthorship W3207737701A5024938513 @default.
- W3207737701 hasAuthorship W3207737701A5048737655 @default.
- W3207737701 hasAuthorship W3207737701A5077821870 @default.
- W3207737701 hasAuthorship W3207737701A5082508483 @default.
- W3207737701 hasBestOaLocation W32077377011 @default.
- W3207737701 hasConcept C105795698 @default.
- W3207737701 hasConcept C111030470 @default.
- W3207737701 hasConcept C11413529 @default.
- W3207737701 hasConcept C119857082 @default.
- W3207737701 hasConcept C121332964 @default.
- W3207737701 hasConcept C121684516 @default.
- W3207737701 hasConcept C124101348 @default.
- W3207737701 hasConcept C136764020 @default.
- W3207737701 hasConcept C154945302 @default.
- W3207737701 hasConcept C155846161 @default.
- W3207737701 hasConcept C163716315 @default.
- W3207737701 hasConcept C178650346 @default.
- W3207737701 hasConcept C185429906 @default.
- W3207737701 hasConcept C2984927552 @default.
- W3207737701 hasConcept C33923547 @default.
- W3207737701 hasConcept C37616216 @default.
- W3207737701 hasConcept C41008148 @default.
- W3207737701 hasConcept C62520636 @default.
- W3207737701 hasConceptScore W3207737701C105795698 @default.
- W3207737701 hasConceptScore W3207737701C111030470 @default.
- W3207737701 hasConceptScore W3207737701C11413529 @default.
- W3207737701 hasConceptScore W3207737701C119857082 @default.
- W3207737701 hasConceptScore W3207737701C121332964 @default.
- W3207737701 hasConceptScore W3207737701C121684516 @default.
- W3207737701 hasConceptScore W3207737701C124101348 @default.
- W3207737701 hasConceptScore W3207737701C136764020 @default.
- W3207737701 hasConceptScore W3207737701C154945302 @default.
- W3207737701 hasConceptScore W3207737701C155846161 @default.
- W3207737701 hasConceptScore W3207737701C163716315 @default.
- W3207737701 hasConceptScore W3207737701C178650346 @default.
- W3207737701 hasConceptScore W3207737701C185429906 @default.
- W3207737701 hasConceptScore W3207737701C2984927552 @default.
- W3207737701 hasConceptScore W3207737701C33923547 @default.
- W3207737701 hasConceptScore W3207737701C37616216 @default.
- W3207737701 hasConceptScore W3207737701C41008148 @default.
- W3207737701 hasConceptScore W3207737701C62520636 @default.
- W3207737701 hasFunder F4320334626 @default.
- W3207737701 hasIssue "1" @default.
- W3207737701 hasLocation W32077377011 @default.
- W3207737701 hasLocation W32077377012 @default.
- W3207737701 hasLocation W32077377013 @default.
- W3207737701 hasLocation W32077377014 @default.
- W3207737701 hasLocation W32077377015 @default.