Matches in SemOpenAlex for { <https://semopenalex.org/work/W3207762968> ?p ?o ?g. }
- W3207762968 abstract "Abstract Despite the fact that tumor microenvironment (TME) and gene mutations are the main determinants of progression of the deadliest cancer in the world – lung cancer – their interrelations are not well understood. Digital pathology data provide a unique insight into the spatial composition of the TME. Various spatial metrics and machine learning approaches were proposed for prediction of either patient survival or gene mutations from these data. Still, these approaches are limited in the scope of analyzed features and in their explainability and as such fail to transfer to clinical practice. Here, we generated 23,199 image patches from 55 hematoxylin-and-eosin (H&E)-stained lung cancer tissue sections and annotated them into 9 different tissue classes. Using this dataset, we trained a deep neural network ARA-CNN, achieving per-class AUC ranging from 0.72 to 0.99. We applied the trained network to segment 467 lung cancer H&E images downloaded from The Cancer Genome Atlas (TCGA) database. We used the segmented images to compute human interpretable features reflecting the heterogeneous composition of the TME, and successfully utilized them to predict patient survival (c-index 0.723) and cancer gene mutations (largest AUC 73.5% for PDGFRB ). Our approach can be generalized to different cancer types to inform precision medicine strategies." @default.
- W3207762968 created "2021-10-25" @default.
- W3207762968 creator A5011125993 @default.
- W3207762968 creator A5012992768 @default.
- W3207762968 creator A5023250116 @default.
- W3207762968 creator A5025051630 @default.
- W3207762968 creator A5033708075 @default.
- W3207762968 creator A5036326710 @default.
- W3207762968 creator A5044049473 @default.
- W3207762968 creator A5046396358 @default.
- W3207762968 creator A5079664149 @default.
- W3207762968 creator A5083286726 @default.
- W3207762968 date "2021-10-09" @default.
- W3207762968 modified "2023-10-03" @default.
- W3207762968 title "Deep learning-based tumor microenvironment segmentation is predictive of tumor mutations and patient survival in non-small-cell lung cancer" @default.
- W3207762968 cites W1965092590 @default.
- W3207762968 cites W1989734503 @default.
- W3207762968 cites W1999091558 @default.
- W3207762968 cites W2022233039 @default.
- W3207762968 cites W2030732800 @default.
- W3207762968 cites W2042437331 @default.
- W3207762968 cites W2084139018 @default.
- W3207762968 cites W2087189381 @default.
- W3207762968 cites W2090226388 @default.
- W3207762968 cites W2100068901 @default.
- W3207762968 cites W2111904928 @default.
- W3207762968 cites W2168404690 @default.
- W3207762968 cites W2194775991 @default.
- W3207762968 cites W2479420012 @default.
- W3207762968 cites W2504220184 @default.
- W3207762968 cites W2521472183 @default.
- W3207762968 cites W2554107370 @default.
- W3207762968 cites W2570343428 @default.
- W3207762968 cites W2611463039 @default.
- W3207762968 cites W2744335798 @default.
- W3207762968 cites W2751723768 @default.
- W3207762968 cites W2758927689 @default.
- W3207762968 cites W2760946358 @default.
- W3207762968 cites W2792583114 @default.
- W3207762968 cites W2801309958 @default.
- W3207762968 cites W2804812017 @default.
- W3207762968 cites W2842842413 @default.
- W3207762968 cites W2891800461 @default.
- W3207762968 cites W2904211489 @default.
- W3207762968 cites W2911964244 @default.
- W3207762968 cites W2915595952 @default.
- W3207762968 cites W2949310256 @default.
- W3207762968 cites W2952481429 @default.
- W3207762968 cites W2960044684 @default.
- W3207762968 cites W2964471257 @default.
- W3207762968 cites W2971714046 @default.
- W3207762968 cites W2978575375 @default.
- W3207762968 cites W2978882452 @default.
- W3207762968 cites W3003526695 @default.
- W3207762968 cites W3003649900 @default.
- W3207762968 cites W3016758757 @default.
- W3207762968 cites W3017125932 @default.
- W3207762968 cites W3035647551 @default.
- W3207762968 cites W3044996171 @default.
- W3207762968 cites W3068772833 @default.
- W3207762968 cites W3096176742 @default.
- W3207762968 cites W3096447192 @default.
- W3207762968 cites W3106324661 @default.
- W3207762968 cites W3110833960 @default.
- W3207762968 cites W3133782060 @default.
- W3207762968 cites W3139255497 @default.
- W3207762968 cites W3142222863 @default.
- W3207762968 cites W3151219028 @default.
- W3207762968 cites W3193412075 @default.
- W3207762968 doi "https://doi.org/10.1101/2021.10.09.462574" @default.
- W3207762968 hasPublicationYear "2021" @default.
- W3207762968 type Work @default.
- W3207762968 sameAs 3207762968 @default.
- W3207762968 citedByCount "0" @default.
- W3207762968 crossrefType "posted-content" @default.
- W3207762968 hasAuthorship W3207762968A5011125993 @default.
- W3207762968 hasAuthorship W3207762968A5012992768 @default.
- W3207762968 hasAuthorship W3207762968A5023250116 @default.
- W3207762968 hasAuthorship W3207762968A5025051630 @default.
- W3207762968 hasAuthorship W3207762968A5033708075 @default.
- W3207762968 hasAuthorship W3207762968A5036326710 @default.
- W3207762968 hasAuthorship W3207762968A5044049473 @default.
- W3207762968 hasAuthorship W3207762968A5046396358 @default.
- W3207762968 hasAuthorship W3207762968A5079664149 @default.
- W3207762968 hasAuthorship W3207762968A5083286726 @default.
- W3207762968 hasBestOaLocation W32077629681 @default.
- W3207762968 hasConcept C108583219 @default.
- W3207762968 hasConcept C121608353 @default.
- W3207762968 hasConcept C126322002 @default.
- W3207762968 hasConcept C142724271 @default.
- W3207762968 hasConcept C154945302 @default.
- W3207762968 hasConcept C163763905 @default.
- W3207762968 hasConcept C2776107976 @default.
- W3207762968 hasConcept C2776256026 @default.
- W3207762968 hasConcept C2777522853 @default.
- W3207762968 hasConcept C41008148 @default.
- W3207762968 hasConcept C70721500 @default.
- W3207762968 hasConcept C71924100 @default.
- W3207762968 hasConcept C86803240 @default.
- W3207762968 hasConcept C89600930 @default.