Matches in SemOpenAlex for { <https://semopenalex.org/work/W3207767316> ?p ?o ?g. }
- W3207767316 abstract "ABSTRACT The COVID-19 pandemic poses a heightened risk to health workers, especially in low- and middle-income countries such as Indonesia. Due to the limitations of implementing mass RT-PCR testing for health workers, high-performing and cost-effective methodologies must be developed to help identify COVID-19 positive health workers and protect the spearhead of the battle against the pandemic. This study aimed to investigate the application of machine learning classifiers to predict the risk of COVID-19 positivity (by RT-PCR) using data obtained from a survey specific to health workers. Machine learning tools can enhance COVID-19 screening capacity in high-risk populations such as health workers in environments where cost is a barrier to the accessibility of adequate testing and screening supplies. We built two sets of COVID-19 Likelihood Meter (CLM) models: one trained on data from a broad population of health workers in Jakarta and Semarang (full model) and tested on the same, and one trained on health workers from Jakarta only (Jakarta model) and tested on both the same and an independent population of Semarang health workers. The area under the receiver-operating-characteristic curve (AUC), average precision (AP), and the Brier score (BS) were used to assess model performance. Shapely additive explanations (SHAP) were used to analyse future importance. The final dataset for the study included 5,393 healthcare workers. For the full model, the random forest was selected as the algorithm choice. It achieved cross-validation of mean AUC of 0.832 ± 0.015, AP of 0.513 ± 0.039, and BS of 0.124 ± 0.005, and was high performing during testing with AUC and AP of 0.849 and 0.51, respectively. The random forest classifier also displayed the best and most robust performance for the Jakarta model, with AUC of 0.856 ± 0.015, AP of 0.434 ± 0.039, and BS of 0.08 ± 0.0003. The performance when testing on the Semarang healthcare workers was AUC of 0.745 and AP of 0.694. Meanwhile, the performance for Jakarta 2022 test set was an AUC of 0.761 and AP of 0.535. Our models yielded high predictive performance and can be used as an alternative COVID-19 methodology for healthcare workers in Indonesia, therefore helping in predicting an increased trend of transmission during the transition into endemic." @default.
- W3207767316 created "2021-10-25" @default.
- W3207767316 creator A5004110401 @default.
- W3207767316 creator A5005511288 @default.
- W3207767316 creator A5006612116 @default.
- W3207767316 creator A5030052681 @default.
- W3207767316 creator A5031003924 @default.
- W3207767316 creator A5042930394 @default.
- W3207767316 creator A5050323902 @default.
- W3207767316 creator A5055501401 @default.
- W3207767316 creator A5069013585 @default.
- W3207767316 creator A5081203759 @default.
- W3207767316 creator A5083369867 @default.
- W3207767316 creator A5084146885 @default.
- W3207767316 date "2021-10-18" @default.
- W3207767316 modified "2023-09-27" @default.
- W3207767316 title "Application of Machine Learning in Prediction of COVID-19 Diagnosis for Indonesian Healthcare Workers" @default.
- W3207767316 cites W2056132907 @default.
- W3207767316 cites W2911964244 @default.
- W3207767316 cites W3009299193 @default.
- W3207767316 cites W3012877202 @default.
- W3207767316 cites W3018197536 @default.
- W3207767316 cites W3019657600 @default.
- W3207767316 cites W3026059552 @default.
- W3207767316 cites W3035693076 @default.
- W3207767316 cites W3038925693 @default.
- W3207767316 cites W3048479592 @default.
- W3207767316 cites W3084329425 @default.
- W3207767316 cites W3087795675 @default.
- W3207767316 cites W3092228656 @default.
- W3207767316 cites W3092324640 @default.
- W3207767316 cites W3119464161 @default.
- W3207767316 cites W3122601055 @default.
- W3207767316 cites W3133191822 @default.
- W3207767316 cites W3163570493 @default.
- W3207767316 cites W3165312480 @default.
- W3207767316 cites W3180778900 @default.
- W3207767316 doi "https://doi.org/10.1101/2021.10.15.21265021" @default.
- W3207767316 hasPublicationYear "2021" @default.
- W3207767316 type Work @default.
- W3207767316 sameAs 3207767316 @default.
- W3207767316 citedByCount "0" @default.
- W3207767316 crossrefType "posted-content" @default.
- W3207767316 hasAuthorship W3207767316A5004110401 @default.
- W3207767316 hasAuthorship W3207767316A5005511288 @default.
- W3207767316 hasAuthorship W3207767316A5006612116 @default.
- W3207767316 hasAuthorship W3207767316A5030052681 @default.
- W3207767316 hasAuthorship W3207767316A5031003924 @default.
- W3207767316 hasAuthorship W3207767316A5042930394 @default.
- W3207767316 hasAuthorship W3207767316A5050323902 @default.
- W3207767316 hasAuthorship W3207767316A5055501401 @default.
- W3207767316 hasAuthorship W3207767316A5069013585 @default.
- W3207767316 hasAuthorship W3207767316A5081203759 @default.
- W3207767316 hasAuthorship W3207767316A5083369867 @default.
- W3207767316 hasAuthorship W3207767316A5084146885 @default.
- W3207767316 hasBestOaLocation W32077673161 @default.
- W3207767316 hasConcept C105795698 @default.
- W3207767316 hasConcept C119857082 @default.
- W3207767316 hasConcept C138885662 @default.
- W3207767316 hasConcept C142724271 @default.
- W3207767316 hasConcept C154945302 @default.
- W3207767316 hasConcept C160735492 @default.
- W3207767316 hasConcept C162324750 @default.
- W3207767316 hasConcept C2779134260 @default.
- W3207767316 hasConcept C2779207338 @default.
- W3207767316 hasConcept C2908647359 @default.
- W3207767316 hasConcept C3008058167 @default.
- W3207767316 hasConcept C33923547 @default.
- W3207767316 hasConcept C41008148 @default.
- W3207767316 hasConcept C41895202 @default.
- W3207767316 hasConcept C50522688 @default.
- W3207767316 hasConcept C524204448 @default.
- W3207767316 hasConcept C71924100 @default.
- W3207767316 hasConcept C89623803 @default.
- W3207767316 hasConcept C99454951 @default.
- W3207767316 hasConceptScore W3207767316C105795698 @default.
- W3207767316 hasConceptScore W3207767316C119857082 @default.
- W3207767316 hasConceptScore W3207767316C138885662 @default.
- W3207767316 hasConceptScore W3207767316C142724271 @default.
- W3207767316 hasConceptScore W3207767316C154945302 @default.
- W3207767316 hasConceptScore W3207767316C160735492 @default.
- W3207767316 hasConceptScore W3207767316C162324750 @default.
- W3207767316 hasConceptScore W3207767316C2779134260 @default.
- W3207767316 hasConceptScore W3207767316C2779207338 @default.
- W3207767316 hasConceptScore W3207767316C2908647359 @default.
- W3207767316 hasConceptScore W3207767316C3008058167 @default.
- W3207767316 hasConceptScore W3207767316C33923547 @default.
- W3207767316 hasConceptScore W3207767316C41008148 @default.
- W3207767316 hasConceptScore W3207767316C41895202 @default.
- W3207767316 hasConceptScore W3207767316C50522688 @default.
- W3207767316 hasConceptScore W3207767316C524204448 @default.
- W3207767316 hasConceptScore W3207767316C71924100 @default.
- W3207767316 hasConceptScore W3207767316C89623803 @default.
- W3207767316 hasConceptScore W3207767316C99454951 @default.
- W3207767316 hasLocation W32077673161 @default.
- W3207767316 hasLocation W32077673162 @default.
- W3207767316 hasOpenAccess W3207767316 @default.
- W3207767316 hasPrimaryLocation W32077673161 @default.
- W3207767316 hasRelatedWork W2748952813 @default.
- W3207767316 hasRelatedWork W2899084033 @default.