Matches in SemOpenAlex for { <https://semopenalex.org/work/W3207769569> ?p ?o ?g. }
- W3207769569 endingPage "102192" @default.
- W3207769569 startingPage "102192" @default.
- W3207769569 abstract "Myocardial Infarction (MI) has the highest mortality of all cardiovascular diseases (CVDs). Detection of MI and information regarding its occurrence-time in particular, would enable timely interventions that may improve patient outcomes, thereby reducing the global rise in CVD deaths. Electrocardiogram (ECG) recordings are currently used to screen MI patients. However, manual inspection of ECGs is time-consuming and prone to subjective bias. Machine learning methods have been adopted for automated ECG diagnosis, but most approaches require extraction of ECG beats or consider leads independently of one another. We propose an end-to-end deep learning approach, DeepMI, to classify MI from Normal cases as well as identifying the time-occurrence of MI (defined as Acute, Recent and Old), using a collection of fusion strategies on 12 ECG leads at data-, feature-, and decision-level. In order to minimise computational overhead, we employ transfer learning using existing computer vision networks. Moreover, we use recurrent neural networks to encode the longitudinal information inherent in ECGs. We validated DeepMI on a dataset collected from 17,381 patients, in which over 323,000 samples were extracted per ECG lead. We were able to classify Normal cases as well as Acute, Recent and Old onset cases of MI, with AUROCs of 96.7%, 82.9%, 68.6% and 73.8%, respectively. We have demonstrated a multi-lead fusion approach to detect the presence and occurrence-time of MI. Our end-to-end framework provides flexibility for different levels of multi-lead ECG fusion and performs feature extraction via transfer learning." @default.
- W3207769569 created "2021-10-25" @default.
- W3207769569 creator A5006250732 @default.
- W3207769569 creator A5024549881 @default.
- W3207769569 creator A5033041477 @default.
- W3207769569 creator A5034764782 @default.
- W3207769569 creator A5040195857 @default.
- W3207769569 creator A5055850985 @default.
- W3207769569 creator A5063851235 @default.
- W3207769569 date "2021-11-01" @default.
- W3207769569 modified "2023-10-01" @default.
- W3207769569 title "DeepMI: Deep multi-lead ECG fusion for identifying myocardial infarction and its occurrence-time" @default.
- W3207769569 cites W1975640002 @default.
- W3207769569 cites W1990410586 @default.
- W3207769569 cites W2047181473 @default.
- W3207769569 cites W2076151226 @default.
- W3207769569 cites W2080552047 @default.
- W3207769569 cites W2083716196 @default.
- W3207769569 cites W2091666972 @default.
- W3207769569 cites W2091738337 @default.
- W3207769569 cites W2098409941 @default.
- W3207769569 cites W2100558806 @default.
- W3207769569 cites W2162800060 @default.
- W3207769569 cites W2289846183 @default.
- W3207769569 cites W2702116941 @default.
- W3207769569 cites W2734657638 @default.
- W3207769569 cites W2755499309 @default.
- W3207769569 cites W2767583913 @default.
- W3207769569 cites W2802619004 @default.
- W3207769569 cites W2885499028 @default.
- W3207769569 cites W2893548555 @default.
- W3207769569 cites W2908738937 @default.
- W3207769569 cites W2908742111 @default.
- W3207769569 cites W2913789442 @default.
- W3207769569 cites W2914231497 @default.
- W3207769569 cites W2944352165 @default.
- W3207769569 cites W2944552054 @default.
- W3207769569 cites W2950264677 @default.
- W3207769569 cites W2955664688 @default.
- W3207769569 cites W2968315492 @default.
- W3207769569 cites W2980825080 @default.
- W3207769569 cites W2999204501 @default.
- W3207769569 cites W3103507112 @default.
- W3207769569 cites W4240324388 @default.
- W3207769569 doi "https://doi.org/10.1016/j.artmed.2021.102192" @default.
- W3207769569 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34763807" @default.
- W3207769569 hasPublicationYear "2021" @default.
- W3207769569 type Work @default.
- W3207769569 sameAs 3207769569 @default.
- W3207769569 citedByCount "19" @default.
- W3207769569 countsByYear W32077695692021 @default.
- W3207769569 countsByYear W32077695692022 @default.
- W3207769569 countsByYear W32077695692023 @default.
- W3207769569 crossrefType "journal-article" @default.
- W3207769569 hasAuthorship W3207769569A5006250732 @default.
- W3207769569 hasAuthorship W3207769569A5024549881 @default.
- W3207769569 hasAuthorship W3207769569A5033041477 @default.
- W3207769569 hasAuthorship W3207769569A5034764782 @default.
- W3207769569 hasAuthorship W3207769569A5040195857 @default.
- W3207769569 hasAuthorship W3207769569A5055850985 @default.
- W3207769569 hasAuthorship W3207769569A5063851235 @default.
- W3207769569 hasBestOaLocation W32077695692 @default.
- W3207769569 hasConcept C108583219 @default.
- W3207769569 hasConcept C114793014 @default.
- W3207769569 hasConcept C119857082 @default.
- W3207769569 hasConcept C127313418 @default.
- W3207769569 hasConcept C138885662 @default.
- W3207769569 hasConcept C144133560 @default.
- W3207769569 hasConcept C150899416 @default.
- W3207769569 hasConcept C153180895 @default.
- W3207769569 hasConcept C154945302 @default.
- W3207769569 hasConcept C162853370 @default.
- W3207769569 hasConcept C164705383 @default.
- W3207769569 hasConcept C2776401178 @default.
- W3207769569 hasConcept C2777093003 @default.
- W3207769569 hasConcept C2781468064 @default.
- W3207769569 hasConcept C41008148 @default.
- W3207769569 hasConcept C41895202 @default.
- W3207769569 hasConcept C500558357 @default.
- W3207769569 hasConcept C50644808 @default.
- W3207769569 hasConcept C52622490 @default.
- W3207769569 hasConcept C71924100 @default.
- W3207769569 hasConceptScore W3207769569C108583219 @default.
- W3207769569 hasConceptScore W3207769569C114793014 @default.
- W3207769569 hasConceptScore W3207769569C119857082 @default.
- W3207769569 hasConceptScore W3207769569C127313418 @default.
- W3207769569 hasConceptScore W3207769569C138885662 @default.
- W3207769569 hasConceptScore W3207769569C144133560 @default.
- W3207769569 hasConceptScore W3207769569C150899416 @default.
- W3207769569 hasConceptScore W3207769569C153180895 @default.
- W3207769569 hasConceptScore W3207769569C154945302 @default.
- W3207769569 hasConceptScore W3207769569C162853370 @default.
- W3207769569 hasConceptScore W3207769569C164705383 @default.
- W3207769569 hasConceptScore W3207769569C2776401178 @default.
- W3207769569 hasConceptScore W3207769569C2777093003 @default.
- W3207769569 hasConceptScore W3207769569C2781468064 @default.
- W3207769569 hasConceptScore W3207769569C41008148 @default.
- W3207769569 hasConceptScore W3207769569C41895202 @default.