Matches in SemOpenAlex for { <https://semopenalex.org/work/W3207839478> ?p ?o ?g. }
- W3207839478 endingPage "15" @default.
- W3207839478 startingPage "1" @default.
- W3207839478 abstract "In this article, we study the time-fractional nonlinear Klein–Gordon equation in Caputo–Fabrizio’s sense and Atangana–Baleanu–Caputo’s sense. The modified double Laplace transform decomposition method is used to attain solutions in the form of series of the proposed model under aforesaid fractional operators. The suggested method is the composition of the double Laplace transform and decomposition method. The convergence of the considered method is demonstrated for the considered model. It is observed that the obtained solutions converge to the exact solution of the proposed model. For validity, we consider two particular examples with appropriate initial conditions and derived the series solution in the sense of both operators for the considered model. From numerical solutions, it is observed that the considered model admits pulse-shaped solitons. It is also observed that the wave amplitude enhances with variations in time, which infers the coefficient <math xmlns=http://www.w3.org/1998/Math/MathML id=M1> <mi>α</mi> </math> significantly increases the wave amplitude and affects the nonlinearity/dispersion effects, therefore may admit monotonic shocks. The physical behavior of the considered numerical examples is illustrated explicitly which reveals the evolution of localized shock excitations." @default.
- W3207839478 created "2021-10-25" @default.
- W3207839478 creator A5037019830 @default.
- W3207839478 creator A5069745149 @default.
- W3207839478 creator A5073895350 @default.
- W3207839478 creator A5086666756 @default.
- W3207839478 date "2021-10-13" @default.
- W3207839478 modified "2023-10-14" @default.
- W3207839478 title "Time-Fractional Klein–Gordon Equation with Solitary/Shock Waves Solutions" @default.
- W3207839478 cites W100319600 @default.
- W3207839478 cites W1539537062 @default.
- W3207839478 cites W1564289124 @default.
- W3207839478 cites W1596163213 @default.
- W3207839478 cites W1964137308 @default.
- W3207839478 cites W1966976574 @default.
- W3207839478 cites W1975670568 @default.
- W3207839478 cites W1982907413 @default.
- W3207839478 cites W1984379389 @default.
- W3207839478 cites W1986651306 @default.
- W3207839478 cites W1987078599 @default.
- W3207839478 cites W2000842699 @default.
- W3207839478 cites W2004007224 @default.
- W3207839478 cites W2025001386 @default.
- W3207839478 cites W2028551279 @default.
- W3207839478 cites W2031142470 @default.
- W3207839478 cites W2035699222 @default.
- W3207839478 cites W2038152558 @default.
- W3207839478 cites W2043909628 @default.
- W3207839478 cites W2045812925 @default.
- W3207839478 cites W2050765441 @default.
- W3207839478 cites W2061209223 @default.
- W3207839478 cites W2064354079 @default.
- W3207839478 cites W2071878842 @default.
- W3207839478 cites W2080109200 @default.
- W3207839478 cites W2087770578 @default.
- W3207839478 cites W2090323588 @default.
- W3207839478 cites W2094000073 @default.
- W3207839478 cites W2100596754 @default.
- W3207839478 cites W2136799049 @default.
- W3207839478 cites W2138262300 @default.
- W3207839478 cites W2162438237 @default.
- W3207839478 cites W2177304290 @default.
- W3207839478 cites W2314374216 @default.
- W3207839478 cites W2519899354 @default.
- W3207839478 cites W2527845113 @default.
- W3207839478 cites W2573575471 @default.
- W3207839478 cites W2744957862 @default.
- W3207839478 cites W2781132126 @default.
- W3207839478 cites W2803529306 @default.
- W3207839478 cites W2884592078 @default.
- W3207839478 cites W2896017283 @default.
- W3207839478 cites W2897394303 @default.
- W3207839478 cites W2963641381 @default.
- W3207839478 cites W2981851111 @default.
- W3207839478 cites W3043520600 @default.
- W3207839478 cites W3096895822 @default.
- W3207839478 cites W3173957070 @default.
- W3207839478 cites W3183558173 @default.
- W3207839478 cites W4244854774 @default.
- W3207839478 cites W4301223505 @default.
- W3207839478 cites W1543657737 @default.
- W3207839478 doi "https://doi.org/10.1155/2021/6858592" @default.
- W3207839478 hasPublicationYear "2021" @default.
- W3207839478 type Work @default.
- W3207839478 sameAs 3207839478 @default.
- W3207839478 citedByCount "31" @default.
- W3207839478 countsByYear W32078394782021 @default.
- W3207839478 countsByYear W32078394782022 @default.
- W3207839478 countsByYear W32078394782023 @default.
- W3207839478 crossrefType "journal-article" @default.
- W3207839478 hasAuthorship W3207839478A5037019830 @default.
- W3207839478 hasAuthorship W3207839478A5069745149 @default.
- W3207839478 hasAuthorship W3207839478A5073895350 @default.
- W3207839478 hasAuthorship W3207839478A5086666756 @default.
- W3207839478 hasBestOaLocation W32078394781 @default.
- W3207839478 hasConcept C118615104 @default.
- W3207839478 hasConcept C121332964 @default.
- W3207839478 hasConcept C134306372 @default.
- W3207839478 hasConcept C143724316 @default.
- W3207839478 hasConcept C151730666 @default.
- W3207839478 hasConcept C154249771 @default.
- W3207839478 hasConcept C158622935 @default.
- W3207839478 hasConcept C162324750 @default.
- W3207839478 hasConcept C177562468 @default.
- W3207839478 hasConcept C180205008 @default.
- W3207839478 hasConcept C2777303404 @default.
- W3207839478 hasConcept C2778258933 @default.
- W3207839478 hasConcept C28826006 @default.
- W3207839478 hasConcept C33923547 @default.
- W3207839478 hasConcept C50522688 @default.
- W3207839478 hasConcept C62520636 @default.
- W3207839478 hasConcept C70477161 @default.
- W3207839478 hasConcept C72169020 @default.
- W3207839478 hasConcept C86803240 @default.
- W3207839478 hasConcept C97355855 @default.
- W3207839478 hasConcept C97937538 @default.
- W3207839478 hasConceptScore W3207839478C118615104 @default.
- W3207839478 hasConceptScore W3207839478C121332964 @default.