Matches in SemOpenAlex for { <https://semopenalex.org/work/W3207854810> ?p ?o ?g. }
- W3207854810 abstract "With a high proportion of variable renewable energy integration, accurate forecasting approach is of vital importance in ensuring the reliable and economic operation of power system. Therefore, in this article, a novel method for predicting photovoltaic (PV) power generation based on convolutional neural network (CNN) is proposed. Analytical models of PV systems are formulated, thereby providing physical knowledge about the relationship between PV output and critical meteorological features. To explore the nonlinear and time-varying properties of PV output, CNN is adopted in this article, which matches the patterns of similar days. Case studies based on realistic datasets in Australia demonstrate that the forecasting performance for solar power can be effectively improved by taking advantage of the proposed CNN-based learning method." @default.
- W3207854810 created "2021-10-25" @default.
- W3207854810 creator A5002120153 @default.
- W3207854810 creator A5010820859 @default.
- W3207854810 creator A5028213062 @default.
- W3207854810 creator A5041814804 @default.
- W3207854810 creator A5042943074 @default.
- W3207854810 creator A5047632666 @default.
- W3207854810 creator A5087786852 @default.
- W3207854810 date "2021-10-07" @default.
- W3207854810 modified "2023-10-13" @default.
- W3207854810 title "Short‐term solar power forecasting based on convolutional neural network and analytical knowledge" @default.
- W3207854810 cites W2018787028 @default.
- W3207854810 cites W2024032348 @default.
- W3207854810 cites W2036230366 @default.
- W3207854810 cites W2061317708 @default.
- W3207854810 cites W2077114403 @default.
- W3207854810 cites W2098677588 @default.
- W3207854810 cites W2145859029 @default.
- W3207854810 cites W2155661311 @default.
- W3207854810 cites W2169101428 @default.
- W3207854810 cites W2426663208 @default.
- W3207854810 cites W2997057460 @default.
- W3207854810 cites W3001512394 @default.
- W3207854810 cites W3007485703 @default.
- W3207854810 cites W3082019920 @default.
- W3207854810 cites W3108008454 @default.
- W3207854810 cites W3108191825 @default.
- W3207854810 cites W4205176169 @default.
- W3207854810 cites W4205416285 @default.
- W3207854810 doi "https://doi.org/10.1002/2050-7038.13111" @default.
- W3207854810 hasPublicationYear "2021" @default.
- W3207854810 type Work @default.
- W3207854810 sameAs 3207854810 @default.
- W3207854810 citedByCount "1" @default.
- W3207854810 countsByYear W32078548102022 @default.
- W3207854810 crossrefType "journal-article" @default.
- W3207854810 hasAuthorship W3207854810A5002120153 @default.
- W3207854810 hasAuthorship W3207854810A5010820859 @default.
- W3207854810 hasAuthorship W3207854810A5028213062 @default.
- W3207854810 hasAuthorship W3207854810A5041814804 @default.
- W3207854810 hasAuthorship W3207854810A5042943074 @default.
- W3207854810 hasAuthorship W3207854810A5047632666 @default.
- W3207854810 hasAuthorship W3207854810A5087786852 @default.
- W3207854810 hasConcept C119599485 @default.
- W3207854810 hasConcept C119857082 @default.
- W3207854810 hasConcept C121332964 @default.
- W3207854810 hasConcept C124101348 @default.
- W3207854810 hasConcept C127413603 @default.
- W3207854810 hasConcept C134306372 @default.
- W3207854810 hasConcept C154945302 @default.
- W3207854810 hasConcept C158622935 @default.
- W3207854810 hasConcept C163258240 @default.
- W3207854810 hasConcept C182365436 @default.
- W3207854810 hasConcept C188573790 @default.
- W3207854810 hasConcept C2777618391 @default.
- W3207854810 hasConcept C2780789856 @default.
- W3207854810 hasConcept C33923547 @default.
- W3207854810 hasConcept C41008148 @default.
- W3207854810 hasConcept C41291067 @default.
- W3207854810 hasConcept C423512 @default.
- W3207854810 hasConcept C50644808 @default.
- W3207854810 hasConcept C61797465 @default.
- W3207854810 hasConcept C62520636 @default.
- W3207854810 hasConcept C81363708 @default.
- W3207854810 hasConcept C89227174 @default.
- W3207854810 hasConceptScore W3207854810C119599485 @default.
- W3207854810 hasConceptScore W3207854810C119857082 @default.
- W3207854810 hasConceptScore W3207854810C121332964 @default.
- W3207854810 hasConceptScore W3207854810C124101348 @default.
- W3207854810 hasConceptScore W3207854810C127413603 @default.
- W3207854810 hasConceptScore W3207854810C134306372 @default.
- W3207854810 hasConceptScore W3207854810C154945302 @default.
- W3207854810 hasConceptScore W3207854810C158622935 @default.
- W3207854810 hasConceptScore W3207854810C163258240 @default.
- W3207854810 hasConceptScore W3207854810C182365436 @default.
- W3207854810 hasConceptScore W3207854810C188573790 @default.
- W3207854810 hasConceptScore W3207854810C2777618391 @default.
- W3207854810 hasConceptScore W3207854810C2780789856 @default.
- W3207854810 hasConceptScore W3207854810C33923547 @default.
- W3207854810 hasConceptScore W3207854810C41008148 @default.
- W3207854810 hasConceptScore W3207854810C41291067 @default.
- W3207854810 hasConceptScore W3207854810C423512 @default.
- W3207854810 hasConceptScore W3207854810C50644808 @default.
- W3207854810 hasConceptScore W3207854810C61797465 @default.
- W3207854810 hasConceptScore W3207854810C62520636 @default.
- W3207854810 hasConceptScore W3207854810C81363708 @default.
- W3207854810 hasConceptScore W3207854810C89227174 @default.
- W3207854810 hasIssue "11" @default.
- W3207854810 hasLocation W32078548101 @default.
- W3207854810 hasOpenAccess W3207854810 @default.
- W3207854810 hasPrimaryLocation W32078548101 @default.
- W3207854810 hasRelatedWork W2008082802 @default.
- W3207854810 hasRelatedWork W2143170985 @default.
- W3207854810 hasRelatedWork W2297891797 @default.
- W3207854810 hasRelatedWork W2783362340 @default.
- W3207854810 hasRelatedWork W3003165674 @default.
- W3207854810 hasRelatedWork W3016056012 @default.
- W3207854810 hasRelatedWork W3194988790 @default.
- W3207854810 hasRelatedWork W3210981289 @default.