Matches in SemOpenAlex for { <https://semopenalex.org/work/W3207858690> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W3207858690 endingPage "12175" @default.
- W3207858690 startingPage "12161" @default.
- W3207858690 abstract "Background: In this research article, the researcher developed a predictive model on fraud orders detection using ensemble approach of supervised machine learning algorithms in supply chain management. Fraud orders are the significant research issues in business industries with respect to supply chain management and logistics management activities it creates a misleading statistic and disrupting the entire business process. The researcher pointed out some of the significant research issues on fraud orders detection in supply chain management.Method: The researcher used the ensemble techniques on predictive model which are based on different supervised machine learning algorithms. This research article intended to the comparative research study on different supervised machine learning algorithms and its accuracy level such as Logistic Regression 0.69, Random Forest Classifier 0.89, K-Neighbours Classifier 0.74, Gaussian-NB0.67, Decision Tree Classifier 0.88. This predictive model is verified at 89% accuracy level and can be capable to handle imbalance training datasets and predict the sales and orders are in category of fraud or not.Results: The researcher handled the imbalance datasets with accuracy level of 89% to identify the orders are in category of fraud or not. The researcher used the sales and orders datasets from Kaggle and refined the data with data pre-process process. During the data analysis process the data are passed through the different supervised machine learning algorithms and finally the researcher found that Random Forest Classifier given the 89% accuracy level to classify those orders are in category of fraud or not. One of closer predictive model-based Decision Tree Classifier which is also given the 88% accuracy level and very close to Random Forest Classifier.Conclusion: Finally, the researcher concluded that the ensemble approach of predictive model is based on Logistic Regression, Random Forest Classifier, K-Neighbours Classifier, Gaussian-NB, Decision Tree Classifier on Fraud Orders Detection Using Supervised Machine Learning Algorithms in Supply Chain Management. This predictive model is verifying at 89% accuracy level to classify whether the orders are in category of fraud or not. The researcher assure that the predictive model would be benefited for the industries in supply chain management and logistics management to identify the sales and orders are fraud or not and enhanced the business process and operational activities." @default.
- W3207858690 created "2021-10-25" @default.
- W3207858690 creator A5016771498 @default.
- W3207858690 date "2021-09-18" @default.
- W3207858690 modified "2023-09-23" @default.
- W3207858690 title "Ensemble Technique on Predictive Analysis and Fraud Orders Detection using Supervised Machine Learning Algorithms in Supply Chain Management" @default.
- W3207858690 hasPublicationYear "2021" @default.
- W3207858690 type Work @default.
- W3207858690 sameAs 3207858690 @default.
- W3207858690 citedByCount "0" @default.
- W3207858690 crossrefType "journal-article" @default.
- W3207858690 hasAuthorship W3207858690A5016771498 @default.
- W3207858690 hasConcept C108713360 @default.
- W3207858690 hasConcept C110083411 @default.
- W3207858690 hasConcept C11413529 @default.
- W3207858690 hasConcept C119857082 @default.
- W3207858690 hasConcept C124101348 @default.
- W3207858690 hasConcept C144133560 @default.
- W3207858690 hasConcept C151956035 @default.
- W3207858690 hasConcept C154945302 @default.
- W3207858690 hasConcept C162853370 @default.
- W3207858690 hasConcept C169258074 @default.
- W3207858690 hasConcept C41008148 @default.
- W3207858690 hasConcept C44104985 @default.
- W3207858690 hasConcept C45942800 @default.
- W3207858690 hasConcept C5481197 @default.
- W3207858690 hasConcept C75684735 @default.
- W3207858690 hasConcept C83209312 @default.
- W3207858690 hasConcept C84525736 @default.
- W3207858690 hasConcept C95623464 @default.
- W3207858690 hasConceptScore W3207858690C108713360 @default.
- W3207858690 hasConceptScore W3207858690C110083411 @default.
- W3207858690 hasConceptScore W3207858690C11413529 @default.
- W3207858690 hasConceptScore W3207858690C119857082 @default.
- W3207858690 hasConceptScore W3207858690C124101348 @default.
- W3207858690 hasConceptScore W3207858690C144133560 @default.
- W3207858690 hasConceptScore W3207858690C151956035 @default.
- W3207858690 hasConceptScore W3207858690C154945302 @default.
- W3207858690 hasConceptScore W3207858690C162853370 @default.
- W3207858690 hasConceptScore W3207858690C169258074 @default.
- W3207858690 hasConceptScore W3207858690C41008148 @default.
- W3207858690 hasConceptScore W3207858690C44104985 @default.
- W3207858690 hasConceptScore W3207858690C45942800 @default.
- W3207858690 hasConceptScore W3207858690C5481197 @default.
- W3207858690 hasConceptScore W3207858690C75684735 @default.
- W3207858690 hasConceptScore W3207858690C83209312 @default.
- W3207858690 hasConceptScore W3207858690C84525736 @default.
- W3207858690 hasConceptScore W3207858690C95623464 @default.
- W3207858690 hasIssue "7" @default.
- W3207858690 hasLocation W32078586901 @default.
- W3207858690 hasOpenAccess W3207858690 @default.
- W3207858690 hasPrimaryLocation W32078586901 @default.
- W3207858690 hasRelatedWork W101121607 @default.
- W3207858690 hasRelatedWork W1909847116 @default.
- W3207858690 hasRelatedWork W2056352422 @default.
- W3207858690 hasRelatedWork W2176987356 @default.
- W3207858690 hasRelatedWork W218195304 @default.
- W3207858690 hasRelatedWork W2351653978 @default.
- W3207858690 hasRelatedWork W2547202110 @default.
- W3207858690 hasRelatedWork W2557348420 @default.
- W3207858690 hasRelatedWork W2904641778 @default.
- W3207858690 hasRelatedWork W2942872554 @default.
- W3207858690 hasRelatedWork W2966244084 @default.
- W3207858690 hasRelatedWork W3007928689 @default.
- W3207858690 hasRelatedWork W3136437899 @default.
- W3207858690 hasRelatedWork W3157195272 @default.
- W3207858690 hasRelatedWork W3159804568 @default.
- W3207858690 hasRelatedWork W3161989282 @default.
- W3207858690 hasRelatedWork W3169809859 @default.
- W3207858690 hasRelatedWork W3172695087 @default.
- W3207858690 hasRelatedWork W3178483058 @default.
- W3207858690 hasRelatedWork W3192068992 @default.
- W3207858690 hasVolume "12" @default.
- W3207858690 isParatext "false" @default.
- W3207858690 isRetracted "false" @default.
- W3207858690 magId "3207858690" @default.
- W3207858690 workType "article" @default.