Matches in SemOpenAlex for { <https://semopenalex.org/work/W3207905946> ?p ?o ?g. }
- W3207905946 endingPage "174" @default.
- W3207905946 startingPage "153" @default.
- W3207905946 abstract "Deep learning has recently become a trending research topic in remote sensing because of its potential in generating high performance for pattern classification. Some deep learning models can make effective use of spectral, spatial, and temporal information from remotely sensed data, resulting in improved mapping solutions, especially over complex environments, such as urban areas. This chapter provides an overview of deep learning models for urban and landscape mapping from remotely sensed data focusing on the potential of deep neural networks to address current challenges in land classification. It begins with a brief discussion of the evolution of artificial neural networks and the basic architecture of multi-layer neural networks deemed as the foundation for developing deep learning models, which is followed by a summary of some major advantages of deep learning. Then, several deep learning models commonly used in remote sensing are introduced, along with a close look at the two most popular models: convolution neural networks (CNNs) and recurrent neural networks (RNNs). Two case studies using CNNs and RNNs for landscape mapping over a complex urbanized coastal area are further presented to demonstrate how deep learning models can be used to generate improved performance in remote sensing. It is believed that these case studies can encourage further thinking over some potential issues (e.g. hyperparameter optimization) challenging the performance of deep learning applications in remote sensing ." @default.
- W3207905946 created "2021-10-25" @default.
- W3207905946 creator A5025749256 @default.
- W3207905946 creator A5084350005 @default.
- W3207905946 creator A5086038967 @default.
- W3207905946 creator A5086311476 @default.
- W3207905946 date "2021-09-30" @default.
- W3207905946 modified "2023-10-16" @default.
- W3207905946 title "Deep Learning for Urban and Landscape Mapping from Remotely Sensed Imagery" @default.
- W3207905946 cites W1498436455 @default.
- W3207905946 cites W1536340909 @default.
- W3207905946 cites W197865394 @default.
- W3207905946 cites W1995341919 @default.
- W3207905946 cites W2001510610 @default.
- W3207905946 cites W2010113775 @default.
- W3207905946 cites W2014970225 @default.
- W3207905946 cites W2026259401 @default.
- W3207905946 cites W2026309857 @default.
- W3207905946 cites W2028240797 @default.
- W3207905946 cites W2029144047 @default.
- W3207905946 cites W2029316659 @default.
- W3207905946 cites W2040859008 @default.
- W3207905946 cites W2040870580 @default.
- W3207905946 cites W2050225888 @default.
- W3207905946 cites W2050494310 @default.
- W3207905946 cites W2051457402 @default.
- W3207905946 cites W2064675550 @default.
- W3207905946 cites W2079454091 @default.
- W3207905946 cites W2081345410 @default.
- W3207905946 cites W2111991669 @default.
- W3207905946 cites W2112796928 @default.
- W3207905946 cites W2117731089 @default.
- W3207905946 cites W2119879130 @default.
- W3207905946 cites W2127038040 @default.
- W3207905946 cites W2130269771 @default.
- W3207905946 cites W2130319358 @default.
- W3207905946 cites W2136848157 @default.
- W3207905946 cites W2136922672 @default.
- W3207905946 cites W2138973222 @default.
- W3207905946 cites W2143527828 @default.
- W3207905946 cites W2160815625 @default.
- W3207905946 cites W2168341506 @default.
- W3207905946 cites W2168809519 @default.
- W3207905946 cites W2267317359 @default.
- W3207905946 cites W2283002322 @default.
- W3207905946 cites W2283858015 @default.
- W3207905946 cites W2324871268 @default.
- W3207905946 cites W2431738724 @default.
- W3207905946 cites W2462592242 @default.
- W3207905946 cites W2518897583 @default.
- W3207905946 cites W2538244214 @default.
- W3207905946 cites W2565950292 @default.
- W3207905946 cites W2599875878 @default.
- W3207905946 cites W2608922915 @default.
- W3207905946 cites W2742982421 @default.
- W3207905946 cites W2743142445 @default.
- W3207905946 cites W2774175635 @default.
- W3207905946 cites W2782522152 @default.
- W3207905946 cites W2784208206 @default.
- W3207905946 cites W2786355301 @default.
- W3207905946 cites W2791006446 @default.
- W3207905946 cites W2791873954 @default.
- W3207905946 cites W2792862011 @default.
- W3207905946 cites W2803946774 @default.
- W3207905946 cites W2804427116 @default.
- W3207905946 cites W2804436788 @default.
- W3207905946 cites W2804846062 @default.
- W3207905946 cites W2894275433 @default.
- W3207905946 cites W2919115771 @default.
- W3207905946 cites W2940726923 @default.
- W3207905946 cites W2963183385 @default.
- W3207905946 cites W4205947740 @default.
- W3207905946 cites W4240485910 @default.
- W3207905946 doi "https://doi.org/10.1002/9781119625865.ch8" @default.
- W3207905946 hasPublicationYear "2021" @default.
- W3207905946 type Work @default.
- W3207905946 sameAs 3207905946 @default.
- W3207905946 citedByCount "0" @default.
- W3207905946 crossrefType "other" @default.
- W3207905946 hasAuthorship W3207905946A5025749256 @default.
- W3207905946 hasAuthorship W3207905946A5084350005 @default.
- W3207905946 hasAuthorship W3207905946A5086038967 @default.
- W3207905946 hasAuthorship W3207905946A5086311476 @default.
- W3207905946 hasConcept C108583219 @default.
- W3207905946 hasConcept C119857082 @default.
- W3207905946 hasConcept C147168706 @default.
- W3207905946 hasConcept C154945302 @default.
- W3207905946 hasConcept C205649164 @default.
- W3207905946 hasConcept C2984842247 @default.
- W3207905946 hasConcept C41008148 @default.
- W3207905946 hasConcept C50644808 @default.
- W3207905946 hasConcept C62649853 @default.
- W3207905946 hasConcept C81363708 @default.
- W3207905946 hasConcept C8642999 @default.
- W3207905946 hasConceptScore W3207905946C108583219 @default.
- W3207905946 hasConceptScore W3207905946C119857082 @default.
- W3207905946 hasConceptScore W3207905946C147168706 @default.
- W3207905946 hasConceptScore W3207905946C154945302 @default.