Matches in SemOpenAlex for { <https://semopenalex.org/work/W3207907443> ?p ?o ?g. }
- W3207907443 abstract "Conventional metamaterial design mainly relies on manual trial‐and‐error design and optimization to achieve target electromagnetic responses. When faced with high‐degree‐of‐freedom application design, it is impossible to achieve an efficient overall design of massive metamaterial structural units. Herein, a new approach for using ensemble learning for objective‐driven easy‐to‐process metamaterial design. From the perspective of data and learners, reduce the complexity of data preprocessing and achieve accurate closed‐loop design by improving the overall performance of the learning model. The proposed framework overcomes some core problems, which have limited the previous design solutions based on a single model/network: adaptive design of different metamaterial objects, input/output vector‐dimensional mismatch, precise prediction of amplitude value at the resonance frequency, lower data acquisition cost, and difficult to process. In the future, researchers can use the proposed method, integrating cutting‐edge machine learning models and algorithms, to design a variety of metamaterial devices." @default.
- W3207907443 created "2021-10-25" @default.
- W3207907443 creator A5012896163 @default.
- W3207907443 creator A5023230051 @default.
- W3207907443 creator A5031804038 @default.
- W3207907443 creator A5038751847 @default.
- W3207907443 creator A5079538183 @default.
- W3207907443 date "2021-10-10" @default.
- W3207907443 modified "2023-10-13" @default.
- W3207907443 title "A Bidirectional Ensemble‐Learning Framework for Target‐Oriented Metamaterial Designs" @default.
- W3207907443 cites W1929077562 @default.
- W3207907443 cites W2010670858 @default.
- W3207907443 cites W2013695155 @default.
- W3207907443 cites W2014094736 @default.
- W3207907443 cites W2027029957 @default.
- W3207907443 cites W2031557272 @default.
- W3207907443 cites W2061082730 @default.
- W3207907443 cites W2077151136 @default.
- W3207907443 cites W2077735967 @default.
- W3207907443 cites W2100636741 @default.
- W3207907443 cites W2106240372 @default.
- W3207907443 cites W2127388200 @default.
- W3207907443 cites W2154789382 @default.
- W3207907443 cites W2331425463 @default.
- W3207907443 cites W2339965549 @default.
- W3207907443 cites W2410447383 @default.
- W3207907443 cites W2543471629 @default.
- W3207907443 cites W2582178220 @default.
- W3207907443 cites W2626194254 @default.
- W3207907443 cites W2753587860 @default.
- W3207907443 cites W2757653147 @default.
- W3207907443 cites W2766162919 @default.
- W3207907443 cites W2775280502 @default.
- W3207907443 cites W2803281408 @default.
- W3207907443 cites W2806536390 @default.
- W3207907443 cites W2884366127 @default.
- W3207907443 cites W2891797827 @default.
- W3207907443 cites W2900701156 @default.
- W3207907443 cites W2906990984 @default.
- W3207907443 cites W2913902234 @default.
- W3207907443 cites W2937816906 @default.
- W3207907443 cites W2962748912 @default.
- W3207907443 cites W2962914006 @default.
- W3207907443 cites W2970998355 @default.
- W3207907443 cites W2979896295 @default.
- W3207907443 cites W2989293933 @default.
- W3207907443 cites W2994313880 @default.
- W3207907443 cites W3035516217 @default.
- W3207907443 cites W3081636821 @default.
- W3207907443 cites W3103346293 @default.
- W3207907443 cites W3120940271 @default.
- W3207907443 cites W3155339128 @default.
- W3207907443 cites W3161958328 @default.
- W3207907443 doi "https://doi.org/10.1002/adpr.202100158" @default.
- W3207907443 hasPublicationYear "2021" @default.
- W3207907443 type Work @default.
- W3207907443 sameAs 3207907443 @default.
- W3207907443 citedByCount "2" @default.
- W3207907443 countsByYear W32079074432022 @default.
- W3207907443 crossrefType "journal-article" @default.
- W3207907443 hasAuthorship W3207907443A5012896163 @default.
- W3207907443 hasAuthorship W3207907443A5023230051 @default.
- W3207907443 hasAuthorship W3207907443A5031804038 @default.
- W3207907443 hasAuthorship W3207907443A5038751847 @default.
- W3207907443 hasAuthorship W3207907443A5079538183 @default.
- W3207907443 hasBestOaLocation W32079074431 @default.
- W3207907443 hasConcept C110367647 @default.
- W3207907443 hasConcept C113775141 @default.
- W3207907443 hasConcept C121332964 @default.
- W3207907443 hasConcept C127413603 @default.
- W3207907443 hasConcept C154945302 @default.
- W3207907443 hasConcept C174998907 @default.
- W3207907443 hasConcept C199360897 @default.
- W3207907443 hasConcept C21547014 @default.
- W3207907443 hasConcept C24326235 @default.
- W3207907443 hasConcept C34736171 @default.
- W3207907443 hasConcept C34972735 @default.
- W3207907443 hasConcept C41008148 @default.
- W3207907443 hasConcept C48262172 @default.
- W3207907443 hasConcept C49040817 @default.
- W3207907443 hasConcept C78519656 @default.
- W3207907443 hasConcept C98045186 @default.
- W3207907443 hasConceptScore W3207907443C110367647 @default.
- W3207907443 hasConceptScore W3207907443C113775141 @default.
- W3207907443 hasConceptScore W3207907443C121332964 @default.
- W3207907443 hasConceptScore W3207907443C127413603 @default.
- W3207907443 hasConceptScore W3207907443C154945302 @default.
- W3207907443 hasConceptScore W3207907443C174998907 @default.
- W3207907443 hasConceptScore W3207907443C199360897 @default.
- W3207907443 hasConceptScore W3207907443C21547014 @default.
- W3207907443 hasConceptScore W3207907443C24326235 @default.
- W3207907443 hasConceptScore W3207907443C34736171 @default.
- W3207907443 hasConceptScore W3207907443C34972735 @default.
- W3207907443 hasConceptScore W3207907443C41008148 @default.
- W3207907443 hasConceptScore W3207907443C48262172 @default.
- W3207907443 hasConceptScore W3207907443C49040817 @default.
- W3207907443 hasConceptScore W3207907443C78519656 @default.
- W3207907443 hasConceptScore W3207907443C98045186 @default.
- W3207907443 hasFunder F4320321001 @default.
- W3207907443 hasFunder F4320324173 @default.