Matches in SemOpenAlex for { <https://semopenalex.org/work/W3207910868> ?p ?o ?g. }
- W3207910868 endingPage "102592" @default.
- W3207910868 startingPage "102592" @default.
- W3207910868 abstract "Plant potassium accumulation (PKA) plays an important role in evaluating the production capacity of crops. Remote sensing from unmanned aerial vehicles (UAVs) is increasingly used in precision agriculture, but relatively little is known about its use for determining the potassium (K) nutritional status of rice (Oryza sativa L.). This study compares the performance of different sets of spectral and textural indices derived from UAV data for estimating rice K nutritional status. A UAV equipped with three cameras (RGB, color-infrared (CIR) and multispectral cameras) was used to acquire imagery of rice canopies at different key growth stages. Immediately following the overflights, rice canopies were sampled for rice PKA. Regression models were then built to predict rice PKA with spectral and textural indices as predictor variables. Finally, stepwise multiple linear regression (SMLR) was used to determine if fusing spectral and textural indices significantly improved UAV-based PKA estimates. The renormalized difference vegetation index (RDVI) calculated from multispectral imagery proved to be the best predictor of rice PKA (R2 = 0.72, RMSE = 5.42 g m−2), though spectral vegetation indices calculated from RGB and CIR imagery also showed moderately strong prediction capability (R2 ≤ 0.56, RMSE ≥ 7.33 g m−2). Among the textural indices, the renormalized difference texture index [RDTI (MEA800, MEA680)] calculated by mean texture (MEA) of the multispectral imagery was the best predictor of rice PKA (R2 = 0.74, RMSE = 5.57 g m−2) while textural indices calculated from the RGB and CIR imagery showed only weak relationships with rice PKA (R2 ≤ 0.40, RMSE ≥ 8.11 g m−2). Fusing textural and spectral vegetation indices improved our ability to remotely sense PKA, with the SMLR model combination of RDTI (MEA800, MEA680) and spectral vegetation index DATT performing best (R2 increased by 11.11% to 0.80 and RMSE decreased by 7.5% to 5.15 g m−2). Our findings suggest that spectral and textural indices derived from UAV data allow for accurate mapping of PKA and that fusion of the two further improves the accuracy." @default.
- W3207910868 created "2021-10-25" @default.
- W3207910868 creator A5000071336 @default.
- W3207910868 creator A5001892611 @default.
- W3207910868 creator A5002618865 @default.
- W3207910868 creator A5006656555 @default.
- W3207910868 creator A5008413260 @default.
- W3207910868 creator A5017022122 @default.
- W3207910868 creator A5032352937 @default.
- W3207910868 creator A5048194616 @default.
- W3207910868 creator A5055483605 @default.
- W3207910868 creator A5065172118 @default.
- W3207910868 creator A5065229969 @default.
- W3207910868 creator A5080665988 @default.
- W3207910868 creator A5081529546 @default.
- W3207910868 date "2021-12-01" @default.
- W3207910868 modified "2023-10-16" @default.
- W3207910868 title "Improving Unmanned Aerial Vehicle (UAV) remote sensing of rice plant potassium accumulation by fusing spectral and textural information" @default.
- W3207910868 cites W1576601709 @default.
- W3207910868 cites W1965106709 @default.
- W3207910868 cites W1970028096 @default.
- W3207910868 cites W1972039356 @default.
- W3207910868 cites W1973680308 @default.
- W3207910868 cites W1980997487 @default.
- W3207910868 cites W1981978730 @default.
- W3207910868 cites W1983118263 @default.
- W3207910868 cites W1983279516 @default.
- W3207910868 cites W1991933965 @default.
- W3207910868 cites W2000613913 @default.
- W3207910868 cites W2012686349 @default.
- W3207910868 cites W2017859040 @default.
- W3207910868 cites W2018027183 @default.
- W3207910868 cites W2018255156 @default.
- W3207910868 cites W2023290060 @default.
- W3207910868 cites W2025781128 @default.
- W3207910868 cites W2025967407 @default.
- W3207910868 cites W2028678328 @default.
- W3207910868 cites W2042254390 @default.
- W3207910868 cites W2048303077 @default.
- W3207910868 cites W2063623478 @default.
- W3207910868 cites W2064417027 @default.
- W3207910868 cites W2064690970 @default.
- W3207910868 cites W2075015559 @default.
- W3207910868 cites W2075021380 @default.
- W3207910868 cites W2091349707 @default.
- W3207910868 cites W2096996101 @default.
- W3207910868 cites W2098630016 @default.
- W3207910868 cites W2111684210 @default.
- W3207910868 cites W2112458566 @default.
- W3207910868 cites W2119513445 @default.
- W3207910868 cites W2124737837 @default.
- W3207910868 cites W2126099406 @default.
- W3207910868 cites W2128866545 @default.
- W3207910868 cites W2131788804 @default.
- W3207910868 cites W2136701119 @default.
- W3207910868 cites W2149813070 @default.
- W3207910868 cites W2159961845 @default.
- W3207910868 cites W2161815745 @default.
- W3207910868 cites W2163450852 @default.
- W3207910868 cites W2166516660 @default.
- W3207910868 cites W2192020007 @default.
- W3207910868 cites W2313541398 @default.
- W3207910868 cites W2317360817 @default.
- W3207910868 cites W2320327248 @default.
- W3207910868 cites W2614638042 @default.
- W3207910868 cites W2646675373 @default.
- W3207910868 cites W2772481104 @default.
- W3207910868 cites W2804616917 @default.
- W3207910868 cites W2891621712 @default.
- W3207910868 cites W2893855791 @default.
- W3207910868 cites W2912198712 @default.
- W3207910868 cites W2920653747 @default.
- W3207910868 cites W2941400914 @default.
- W3207910868 cites W2946139905 @default.
- W3207910868 cites W2964415981 @default.
- W3207910868 cites W2966664137 @default.
- W3207910868 cites W2967514409 @default.
- W3207910868 cites W2967534538 @default.
- W3207910868 cites W2978860639 @default.
- W3207910868 cites W3011105383 @default.
- W3207910868 cites W3028894897 @default.
- W3207910868 cites W3088154325 @default.
- W3207910868 cites W3198313534 @default.
- W3207910868 doi "https://doi.org/10.1016/j.jag.2021.102592" @default.
- W3207910868 hasPublicationYear "2021" @default.
- W3207910868 type Work @default.
- W3207910868 sameAs 3207910868 @default.
- W3207910868 citedByCount "10" @default.
- W3207910868 countsByYear W32079108682021 @default.
- W3207910868 countsByYear W32079108682022 @default.
- W3207910868 countsByYear W32079108682023 @default.
- W3207910868 crossrefType "journal-article" @default.
- W3207910868 hasAuthorship W3207910868A5000071336 @default.
- W3207910868 hasAuthorship W3207910868A5001892611 @default.
- W3207910868 hasAuthorship W3207910868A5002618865 @default.
- W3207910868 hasAuthorship W3207910868A5006656555 @default.
- W3207910868 hasAuthorship W3207910868A5008413260 @default.
- W3207910868 hasAuthorship W3207910868A5017022122 @default.