Matches in SemOpenAlex for { <https://semopenalex.org/work/W3207920982> ?p ?o ?g. }
- W3207920982 endingPage "483" @default.
- W3207920982 startingPage "467" @default.
- W3207920982 abstract "In this study we address the automatic segmentation of selected muscles of the thigh and leg through a supervised deep learning approach.The application of quantitative imaging in neuromuscular diseases requires the availability of regions of interest (ROI) drawn on muscles to extract quantitative parameters. Up to now, manual drawing of ROIs has been considered the gold standard in clinical studies, with no clear and universally accepted standardized procedure for segmentation. Several automatic methods, based mainly on machine learning and deep learning algorithms, have recently been proposed to discriminate between skeletal muscle, bone, subcutaneous and intermuscular adipose tissue. We develop a supervised deep learning approach based on a unified framework for ROI segmentation.The proposed network generates segmentation maps with high accuracy, consisting in Dice Scores ranging from 0.89 to 0.95, with respect to ground truth manually segmented labelled images, also showing high average performance in both mild and severe cases of disease involvement (i.e. entity of fatty replacement).The presented results are promising and potentially translatable to different skeletal muscle groups and other MRI sequences with different contrast and resolution." @default.
- W3207920982 created "2021-10-25" @default.
- W3207920982 creator A5000776432 @default.
- W3207920982 creator A5001734076 @default.
- W3207920982 creator A5010404955 @default.
- W3207920982 creator A5015447429 @default.
- W3207920982 creator A5033822190 @default.
- W3207920982 creator A5034573269 @default.
- W3207920982 creator A5042582841 @default.
- W3207920982 creator A5051669233 @default.
- W3207920982 creator A5055648634 @default.
- W3207920982 creator A5066411369 @default.
- W3207920982 creator A5066629135 @default.
- W3207920982 creator A5083732015 @default.
- W3207920982 creator A5087173140 @default.
- W3207920982 creator A5088511358 @default.
- W3207920982 creator A5090162853 @default.
- W3207920982 creator A5090359104 @default.
- W3207920982 date "2021-10-19" @default.
- W3207920982 modified "2023-10-15" @default.
- W3207920982 title "Deep learning for automatic segmentation of thigh and leg muscles" @default.
- W3207920982 cites W1573164764 @default.
- W3207920982 cites W1901129140 @default.
- W3207920982 cites W2021542826 @default.
- W3207920982 cites W2067952001 @default.
- W3207920982 cites W2168968682 @default.
- W3207920982 cites W2194775991 @default.
- W3207920982 cites W2299211235 @default.
- W3207920982 cites W2328069846 @default.
- W3207920982 cites W2329518209 @default.
- W3207920982 cites W2535166298 @default.
- W3207920982 cites W2592929672 @default.
- W3207920982 cites W2753782517 @default.
- W3207920982 cites W2780449831 @default.
- W3207920982 cites W2903544590 @default.
- W3207920982 cites W2912007568 @default.
- W3207920982 cites W2962914239 @default.
- W3207920982 cites W2980100386 @default.
- W3207920982 cites W2997028236 @default.
- W3207920982 cites W3081605114 @default.
- W3207920982 cites W3083100768 @default.
- W3207920982 cites W3112701542 @default.
- W3207920982 cites W3151361294 @default.
- W3207920982 doi "https://doi.org/10.1007/s10334-021-00967-4" @default.
- W3207920982 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34665370" @default.
- W3207920982 hasPublicationYear "2021" @default.
- W3207920982 type Work @default.
- W3207920982 sameAs 3207920982 @default.
- W3207920982 citedByCount "7" @default.
- W3207920982 countsByYear W32079209822022 @default.
- W3207920982 countsByYear W32079209822023 @default.
- W3207920982 crossrefType "journal-article" @default.
- W3207920982 hasAuthorship W3207920982A5000776432 @default.
- W3207920982 hasAuthorship W3207920982A5001734076 @default.
- W3207920982 hasAuthorship W3207920982A5010404955 @default.
- W3207920982 hasAuthorship W3207920982A5015447429 @default.
- W3207920982 hasAuthorship W3207920982A5033822190 @default.
- W3207920982 hasAuthorship W3207920982A5034573269 @default.
- W3207920982 hasAuthorship W3207920982A5042582841 @default.
- W3207920982 hasAuthorship W3207920982A5051669233 @default.
- W3207920982 hasAuthorship W3207920982A5055648634 @default.
- W3207920982 hasAuthorship W3207920982A5066411369 @default.
- W3207920982 hasAuthorship W3207920982A5066629135 @default.
- W3207920982 hasAuthorship W3207920982A5083732015 @default.
- W3207920982 hasAuthorship W3207920982A5087173140 @default.
- W3207920982 hasAuthorship W3207920982A5088511358 @default.
- W3207920982 hasAuthorship W3207920982A5090162853 @default.
- W3207920982 hasAuthorship W3207920982A5090359104 @default.
- W3207920982 hasBestOaLocation W32079209821 @default.
- W3207920982 hasConcept C105702510 @default.
- W3207920982 hasConcept C108583219 @default.
- W3207920982 hasConcept C124504099 @default.
- W3207920982 hasConcept C126838900 @default.
- W3207920982 hasConcept C143409427 @default.
- W3207920982 hasConcept C146849305 @default.
- W3207920982 hasConcept C153180895 @default.
- W3207920982 hasConcept C154945302 @default.
- W3207920982 hasConcept C163892561 @default.
- W3207920982 hasConcept C19609008 @default.
- W3207920982 hasConcept C2779018429 @default.
- W3207920982 hasConcept C41008148 @default.
- W3207920982 hasConcept C71924100 @default.
- W3207920982 hasConcept C89600930 @default.
- W3207920982 hasConceptScore W3207920982C105702510 @default.
- W3207920982 hasConceptScore W3207920982C108583219 @default.
- W3207920982 hasConceptScore W3207920982C124504099 @default.
- W3207920982 hasConceptScore W3207920982C126838900 @default.
- W3207920982 hasConceptScore W3207920982C143409427 @default.
- W3207920982 hasConceptScore W3207920982C146849305 @default.
- W3207920982 hasConceptScore W3207920982C153180895 @default.
- W3207920982 hasConceptScore W3207920982C154945302 @default.
- W3207920982 hasConceptScore W3207920982C163892561 @default.
- W3207920982 hasConceptScore W3207920982C19609008 @default.
- W3207920982 hasConceptScore W3207920982C2779018429 @default.
- W3207920982 hasConceptScore W3207920982C41008148 @default.
- W3207920982 hasConceptScore W3207920982C71924100 @default.
- W3207920982 hasConceptScore W3207920982C89600930 @default.
- W3207920982 hasFunder F4320322874 @default.