Matches in SemOpenAlex for { <https://semopenalex.org/work/W3207922129> ?p ?o ?g. }
- W3207922129 endingPage "4864" @default.
- W3207922129 startingPage "4851" @default.
- W3207922129 abstract "In a research environment characterized by the five V's of big data, volume, velocity, variety, value, and veracity, the need to develop tools that quickly screen a large number of publications into relevant work is an increasing area of concern, and the data-rich food industry is no exception. Here, a combination of latent Dirichlet allocation and food keyword searches were employed to analyze and filter a dataset of 6102 publications about cold denaturation. After using the Python toolkit generated in this work, the approach yielded 22 topics that provide background and insight on the direction of research in this field, as well as identified the publications in this dataset which are most pertinent to the food industry with precision and recall of 0.419 and 0.949, respectively. Precision is related to the relevance of a paper in the filtered dataset and the recall represents papers which were not identified in the screening method. Lastly, gaps in the literature based on keyword trends are identified to improve the knowledge base of cold denaturation as it relates to the food industry. This approach is generalizable to any similarly organized dataset, and the code is available upon request. Practical Application: A common problem in research is that when you are an expert in one field, learning about another field is difficult, because you may lack the vocabulary and background needed to read cutting edge literature from a new discipline. The Python toolkit developed in this research can be applied by any researcher that is new to a field to identify what the key literature is, what topics they should familiarize themselves with, and what the current trends are in the field. Using this structure, researchers can greatly speed up how they identify new areas to research and find new projects." @default.
- W3207922129 created "2021-10-25" @default.
- W3207922129 creator A5016015713 @default.
- W3207922129 creator A5028377581 @default.
- W3207922129 creator A5042176027 @default.
- W3207922129 creator A5057471965 @default.
- W3207922129 creator A5079396560 @default.
- W3207922129 date "2021-10-15" @default.
- W3207922129 modified "2023-09-25" @default.
- W3207922129 title "Applying text mining to identify relevant literature in food science: Cold denaturation as a case study" @default.
- W3207922129 cites W1576855214 @default.
- W3207922129 cites W168362576 @default.
- W3207922129 cites W1891587661 @default.
- W3207922129 cites W1966900731 @default.
- W3207922129 cites W2001082470 @default.
- W3207922129 cites W2003713109 @default.
- W3207922129 cites W2008913755 @default.
- W3207922129 cites W2023462805 @default.
- W3207922129 cites W2026981750 @default.
- W3207922129 cites W2038043464 @default.
- W3207922129 cites W2040639920 @default.
- W3207922129 cites W2043715877 @default.
- W3207922129 cites W2045634417 @default.
- W3207922129 cites W2084642783 @default.
- W3207922129 cites W2088985757 @default.
- W3207922129 cites W2098571322 @default.
- W3207922129 cites W2128795465 @default.
- W3207922129 cites W2129042371 @default.
- W3207922129 cites W2146668368 @default.
- W3207922129 cites W2160170318 @default.
- W3207922129 cites W2161374186 @default.
- W3207922129 cites W2342249984 @default.
- W3207922129 cites W2782303220 @default.
- W3207922129 cites W2805385227 @default.
- W3207922129 cites W2902756944 @default.
- W3207922129 cites W2905214874 @default.
- W3207922129 cites W2946456684 @default.
- W3207922129 cites W2979924132 @default.
- W3207922129 cites W3007294284 @default.
- W3207922129 cites W4237791300 @default.
- W3207922129 cites W4239098842 @default.
- W3207922129 cites W4313371821 @default.
- W3207922129 doi "https://doi.org/10.1111/1750-3841.15940" @default.
- W3207922129 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34653257" @default.
- W3207922129 hasPublicationYear "2021" @default.
- W3207922129 type Work @default.
- W3207922129 sameAs 3207922129 @default.
- W3207922129 citedByCount "0" @default.
- W3207922129 crossrefType "journal-article" @default.
- W3207922129 hasAuthorship W3207922129A5016015713 @default.
- W3207922129 hasAuthorship W3207922129A5028377581 @default.
- W3207922129 hasAuthorship W3207922129A5042176027 @default.
- W3207922129 hasAuthorship W3207922129A5057471965 @default.
- W3207922129 hasAuthorship W3207922129A5079396560 @default.
- W3207922129 hasConcept C111919701 @default.
- W3207922129 hasConcept C124101348 @default.
- W3207922129 hasConcept C138885662 @default.
- W3207922129 hasConcept C158154518 @default.
- W3207922129 hasConcept C171686336 @default.
- W3207922129 hasConcept C17744445 @default.
- W3207922129 hasConcept C199360897 @default.
- W3207922129 hasConcept C199539241 @default.
- W3207922129 hasConcept C202444582 @default.
- W3207922129 hasConcept C23123220 @default.
- W3207922129 hasConcept C2522767166 @default.
- W3207922129 hasConcept C2777601683 @default.
- W3207922129 hasConcept C2777655017 @default.
- W3207922129 hasConcept C33923547 @default.
- W3207922129 hasConcept C41008148 @default.
- W3207922129 hasConcept C41895202 @default.
- W3207922129 hasConcept C500882744 @default.
- W3207922129 hasConcept C519991488 @default.
- W3207922129 hasConcept C81669768 @default.
- W3207922129 hasConcept C9652623 @default.
- W3207922129 hasConceptScore W3207922129C111919701 @default.
- W3207922129 hasConceptScore W3207922129C124101348 @default.
- W3207922129 hasConceptScore W3207922129C138885662 @default.
- W3207922129 hasConceptScore W3207922129C158154518 @default.
- W3207922129 hasConceptScore W3207922129C171686336 @default.
- W3207922129 hasConceptScore W3207922129C17744445 @default.
- W3207922129 hasConceptScore W3207922129C199360897 @default.
- W3207922129 hasConceptScore W3207922129C199539241 @default.
- W3207922129 hasConceptScore W3207922129C202444582 @default.
- W3207922129 hasConceptScore W3207922129C23123220 @default.
- W3207922129 hasConceptScore W3207922129C2522767166 @default.
- W3207922129 hasConceptScore W3207922129C2777601683 @default.
- W3207922129 hasConceptScore W3207922129C2777655017 @default.
- W3207922129 hasConceptScore W3207922129C33923547 @default.
- W3207922129 hasConceptScore W3207922129C41008148 @default.
- W3207922129 hasConceptScore W3207922129C41895202 @default.
- W3207922129 hasConceptScore W3207922129C500882744 @default.
- W3207922129 hasConceptScore W3207922129C519991488 @default.
- W3207922129 hasConceptScore W3207922129C81669768 @default.
- W3207922129 hasConceptScore W3207922129C9652623 @default.
- W3207922129 hasIssue "11" @default.
- W3207922129 hasLocation W32079221291 @default.
- W3207922129 hasLocation W32079221292 @default.
- W3207922129 hasOpenAccess W3207922129 @default.