Matches in SemOpenAlex for { <https://semopenalex.org/work/W3207943457> ?p ?o ?g. }
- W3207943457 abstract "Abstract Reservoir rock textural properties such as grain size are typically estimated by direct visual observation of the physical texture of core samples. Grain size is one of the important inputs to petrophysical characterization, sedimentological facies classification, identification of depositional environments, and saturation models. A continuous log of grain size distribution over targeted reservoir sections is usually required for these applications. Core descriptions are typically not available over an entire targeted reservoir section. Physical core data may also be damaged during retrieval or due to plugging. Alternative methods proposed in literature are not sustainable due to their limitations in terms of input data requirements and inflexibility to apply them in environments with different geological settings. This paper presents the preliminary results of our investigation of a new methodology based on machine learning technology to complement and enhance the traditional core description and the alternative methods. We developed and optimized supervised machine learning models comprising K-nearest neighbor (KNN), support vector machines (SVM), and decision tree (DT) to indirectly estimate reservoir rock grain size for a new well or targeted reservoir sections from historical wireline logs and archival core descriptions. We used anonymized datasets consisting of nine wells from a clastic reservoir. Seven of the wells were used to train and optimize the models while the remaining two were reserved for validation. The grain size types range from clay to pebbles. The performance of the models confirmed the feasibility of this approach. The KNN, SVM, and DT models demonstrated the capability to estimate the grain size for the test wells by matching actual data with a minimum of 60% and close to 80% accuracy. This is an accomplishment taking into account the uncertainties inherent in the core analysis data. Further analysis of the results showed that the KNN model is the most accurate in performance compared to the other models. For future studies, we will explore more advanced classification algorithms and implement new class labeling strategies to improve the accuracy of this methodology. The attainment of this objective will further help to handle the complexity in the grain size estimation challenge and reduce the current turnaround time for core description." @default.
- W3207943457 created "2021-10-25" @default.
- W3207943457 creator A5011321896 @default.
- W3207943457 creator A5027378012 @default.
- W3207943457 creator A5036577861 @default.
- W3207943457 date "2021-10-18" @default.
- W3207943457 modified "2023-10-16" @default.
- W3207943457 title "Indirect Estimation of Clastic Reservoir Rock Grain Size from Wireline Logs Using a Supervised Nearest Neighbor Algorithm: Preliminary Results" @default.
- W3207943457 cites W125959347 @default.
- W3207943457 cites W1480826668 @default.
- W3207943457 cites W1481886388 @default.
- W3207943457 cites W1966534584 @default.
- W3207943457 cites W2001849575 @default.
- W3207943457 cites W2030865347 @default.
- W3207943457 cites W2036691767 @default.
- W3207943457 cites W2038929364 @default.
- W3207943457 cites W2078247804 @default.
- W3207943457 cites W2079887430 @default.
- W3207943457 cites W2121394390 @default.
- W3207943457 cites W2133732249 @default.
- W3207943457 cites W2270453667 @default.
- W3207943457 cites W2754674748 @default.
- W3207943457 cites W2792667426 @default.
- W3207943457 cites W2897189800 @default.
- W3207943457 cites W2902911663 @default.
- W3207943457 cites W2911964244 @default.
- W3207943457 cites W3011415648 @default.
- W3207943457 cites W3017210109 @default.
- W3207943457 cites W3032586799 @default.
- W3207943457 cites W3042140713 @default.
- W3207943457 cites W3110480309 @default.
- W3207943457 doi "https://doi.org/10.2118/205156-ms" @default.
- W3207943457 hasPublicationYear "2021" @default.
- W3207943457 type Work @default.
- W3207943457 sameAs 3207943457 @default.
- W3207943457 citedByCount "0" @default.
- W3207943457 crossrefType "proceedings-article" @default.
- W3207943457 hasAuthorship W3207943457A5011321896 @default.
- W3207943457 hasAuthorship W3207943457A5027378012 @default.
- W3207943457 hasAuthorship W3207943457A5036577861 @default.
- W3207943457 hasConcept C109007969 @default.
- W3207943457 hasConcept C11413529 @default.
- W3207943457 hasConcept C114793014 @default.
- W3207943457 hasConcept C119857082 @default.
- W3207943457 hasConcept C12267149 @default.
- W3207943457 hasConcept C127313418 @default.
- W3207943457 hasConcept C138170599 @default.
- W3207943457 hasConcept C14641988 @default.
- W3207943457 hasConcept C146588470 @default.
- W3207943457 hasConcept C154945302 @default.
- W3207943457 hasConcept C17409809 @default.
- W3207943457 hasConcept C187320778 @default.
- W3207943457 hasConcept C192191005 @default.
- W3207943457 hasConcept C2776951270 @default.
- W3207943457 hasConcept C41008148 @default.
- W3207943457 hasConcept C46293882 @default.
- W3207943457 hasConcept C555944384 @default.
- W3207943457 hasConcept C5900021 @default.
- W3207943457 hasConcept C6494504 @default.
- W3207943457 hasConcept C6648577 @default.
- W3207943457 hasConcept C76155785 @default.
- W3207943457 hasConcept C78762247 @default.
- W3207943457 hasConceptScore W3207943457C109007969 @default.
- W3207943457 hasConceptScore W3207943457C11413529 @default.
- W3207943457 hasConceptScore W3207943457C114793014 @default.
- W3207943457 hasConceptScore W3207943457C119857082 @default.
- W3207943457 hasConceptScore W3207943457C12267149 @default.
- W3207943457 hasConceptScore W3207943457C127313418 @default.
- W3207943457 hasConceptScore W3207943457C138170599 @default.
- W3207943457 hasConceptScore W3207943457C14641988 @default.
- W3207943457 hasConceptScore W3207943457C146588470 @default.
- W3207943457 hasConceptScore W3207943457C154945302 @default.
- W3207943457 hasConceptScore W3207943457C17409809 @default.
- W3207943457 hasConceptScore W3207943457C187320778 @default.
- W3207943457 hasConceptScore W3207943457C192191005 @default.
- W3207943457 hasConceptScore W3207943457C2776951270 @default.
- W3207943457 hasConceptScore W3207943457C41008148 @default.
- W3207943457 hasConceptScore W3207943457C46293882 @default.
- W3207943457 hasConceptScore W3207943457C555944384 @default.
- W3207943457 hasConceptScore W3207943457C5900021 @default.
- W3207943457 hasConceptScore W3207943457C6494504 @default.
- W3207943457 hasConceptScore W3207943457C6648577 @default.
- W3207943457 hasConceptScore W3207943457C76155785 @default.
- W3207943457 hasConceptScore W3207943457C78762247 @default.
- W3207943457 hasLocation W32079434571 @default.
- W3207943457 hasOpenAccess W3207943457 @default.
- W3207943457 hasPrimaryLocation W32079434571 @default.
- W3207943457 hasRelatedWork W1988643377 @default.
- W3207943457 hasRelatedWork W2094164739 @default.
- W3207943457 hasRelatedWork W2279179778 @default.
- W3207943457 hasRelatedWork W2337001814 @default.
- W3207943457 hasRelatedWork W256165104 @default.
- W3207943457 hasRelatedWork W2759021313 @default.
- W3207943457 hasRelatedWork W2897060695 @default.
- W3207943457 hasRelatedWork W2900224987 @default.
- W3207943457 hasRelatedWork W3176280219 @default.
- W3207943457 hasRelatedWork W885204024 @default.
- W3207943457 isParatext "false" @default.
- W3207943457 isRetracted "false" @default.
- W3207943457 magId "3207943457" @default.