Matches in SemOpenAlex for { <https://semopenalex.org/work/W3207958712> ?p ?o ?g. }
- W3207958712 endingPage "1620" @default.
- W3207958712 startingPage "1587" @default.
- W3207958712 abstract "Big data refers to a massive volume of data collected from heterogeneous data sources including data collected from Internet of Things (IoT) devices. Big data analytics is playing a crucial role in extracting patterns that would benefit efficient and effective decision making. Processing this massive volume of data poses several critical issues such as scalability, security and privacy. To preserve data privacy, numerous privacy-preserving data mining and publishing techniques exist. Data anonymization utilizing data mining techniques for preserving an individual’s privacy is a promising approach to prevent the data against identity disclosure. In this paper, a Parallel Clustering based Anonymization Algorithm (PCAA) is proposed, and the results prove that the algorithm is scalable and also achieves a better tradeoff between privacy and utility. The MapReduce framework is used to parallelize the anonymization process for handling a huge volume of data. The algorithm performs well in terms of classification accuracy, F-measure, and Kullback–Leibler divergence metrics. Moreover, the big data generated from heterogeneous data sources are efficiently protected to meet the ever-growing requirements of the application." @default.
- W3207958712 created "2021-10-25" @default.
- W3207958712 creator A5027547989 @default.
- W3207958712 creator A5040168828 @default.
- W3207958712 date "2021-10-17" @default.
- W3207958712 modified "2023-09-27" @default.
- W3207958712 title "Privacy Preserving Parallel Clustering Based Anonymization for Big Data Using MapReduce Framework" @default.
- W3207958712 cites W1528440931 @default.
- W3207958712 cites W1569223999 @default.
- W3207958712 cites W1924328963 @default.
- W3207958712 cites W1967838552 @default.
- W3207958712 cites W1967883937 @default.
- W3207958712 cites W1968752677 @default.
- W3207958712 cites W1992286709 @default.
- W3207958712 cites W2001336960 @default.
- W3207958712 cites W2009331946 @default.
- W3207958712 cites W2020557108 @default.
- W3207958712 cites W2038688050 @default.
- W3207958712 cites W2041341729 @default.
- W3207958712 cites W2052806235 @default.
- W3207958712 cites W2059900053 @default.
- W3207958712 cites W2068643108 @default.
- W3207958712 cites W2082758646 @default.
- W3207958712 cites W2102840489 @default.
- W3207958712 cites W2113779960 @default.
- W3207958712 cites W2116581216 @default.
- W3207958712 cites W2119047901 @default.
- W3207958712 cites W2119067110 @default.
- W3207958712 cites W2119738171 @default.
- W3207958712 cites W2125396897 @default.
- W3207958712 cites W2132862423 @default.
- W3207958712 cites W2134167315 @default.
- W3207958712 cites W2134479759 @default.
- W3207958712 cites W2135581534 @default.
- W3207958712 cites W2138001464 @default.
- W3207958712 cites W2142406320 @default.
- W3207958712 cites W2147324825 @default.
- W3207958712 cites W2150724485 @default.
- W3207958712 cites W2157271418 @default.
- W3207958712 cites W2159024459 @default.
- W3207958712 cites W2161030490 @default.
- W3207958712 cites W2161229593 @default.
- W3207958712 cites W2164327070 @default.
- W3207958712 cites W2331279951 @default.
- W3207958712 cites W2467620307 @default.
- W3207958712 cites W2549006254 @default.
- W3207958712 cites W2549955619 @default.
- W3207958712 cites W2567289819 @default.
- W3207958712 cites W2760972623 @default.
- W3207958712 cites W2769353087 @default.
- W3207958712 cites W2772968381 @default.
- W3207958712 cites W2776505340 @default.
- W3207958712 cites W2804992248 @default.
- W3207958712 cites W2912642709 @default.
- W3207958712 cites W2937734904 @default.
- W3207958712 cites W2945326446 @default.
- W3207958712 cites W2996807589 @default.
- W3207958712 cites W3013301573 @default.
- W3207958712 cites W3113258518 @default.
- W3207958712 cites W3130933871 @default.
- W3207958712 cites W3164950055 @default.
- W3207958712 cites W4244373353 @default.
- W3207958712 doi "https://doi.org/10.1080/08839514.2021.1987709" @default.
- W3207958712 hasPublicationYear "2021" @default.
- W3207958712 type Work @default.
- W3207958712 sameAs 3207958712 @default.
- W3207958712 citedByCount "2" @default.
- W3207958712 countsByYear W32079587122022 @default.
- W3207958712 countsByYear W32079587122023 @default.
- W3207958712 crossrefType "journal-article" @default.
- W3207958712 hasAuthorship W3207958712A5027547989 @default.
- W3207958712 hasAuthorship W3207958712A5040168828 @default.
- W3207958712 hasBestOaLocation W32079587121 @default.
- W3207958712 hasConcept C111919701 @default.
- W3207958712 hasConcept C119857082 @default.
- W3207958712 hasConcept C121332964 @default.
- W3207958712 hasConcept C123201435 @default.
- W3207958712 hasConcept C124101348 @default.
- W3207958712 hasConcept C151719136 @default.
- W3207958712 hasConcept C17744445 @default.
- W3207958712 hasConcept C199539241 @default.
- W3207958712 hasConcept C20556612 @default.
- W3207958712 hasConcept C2776945810 @default.
- W3207958712 hasConcept C2781396290 @default.
- W3207958712 hasConcept C38652104 @default.
- W3207958712 hasConcept C41008148 @default.
- W3207958712 hasConcept C48044578 @default.
- W3207958712 hasConcept C62520636 @default.
- W3207958712 hasConcept C73555534 @default.
- W3207958712 hasConcept C75684735 @default.
- W3207958712 hasConcept C77088390 @default.
- W3207958712 hasConcept C98045186 @default.
- W3207958712 hasConceptScore W3207958712C111919701 @default.
- W3207958712 hasConceptScore W3207958712C119857082 @default.
- W3207958712 hasConceptScore W3207958712C121332964 @default.
- W3207958712 hasConceptScore W3207958712C123201435 @default.
- W3207958712 hasConceptScore W3207958712C124101348 @default.
- W3207958712 hasConceptScore W3207958712C151719136 @default.