Matches in SemOpenAlex for { <https://semopenalex.org/work/W3207959141> ?p ?o ?g. }
- W3207959141 endingPage "118014" @default.
- W3207959141 startingPage "118014" @default.
- W3207959141 abstract "Bioenergy attracts more attention owing to the reduction of both air pollution and greenhouse gas emissions in a whole life cycle compared to fossil fuels. As a third-generation biofuel, Microalgae Oil (MAO) can utilise carbon dioxide and light energy at an increased photosynthetic efficiency compared to energy crops for biomass. Due to the wide variety of MAO and their blends with diesel in different ratios, characterization of these biofuels’ engine performance is difficult to be standardized, e.g., in-cylinder pressure. This paper proposes a novel approach of geometric neuro-fuzzy transfer learning (GNFTL) for in-cylinder pressure modelling of a diesel engine fuelled with MAO. Inspired by computational geometry, this approach only utilizes limited experimental data obtained by geometric screening to learn a high-precise transfer model of the in-cylinder pressure with different MAO blending ratios. Followed by the process of MAO extraction and test cell description, the proposed approach of GNFTL is presented which comprises geometric transfer domain segmentation and neuro-fuzzy transfer learning. By a comprehensive study, the results demonstrate that the proposed approach can achieve a competitive prediction accuracy whilst significantly reducing experimental efforts on used biofuel by 47.8% and operation time by 41.5%, compared to the conventional manual design of experiment." @default.
- W3207959141 created "2021-10-25" @default.
- W3207959141 creator A5043925036 @default.
- W3207959141 creator A5053524627 @default.
- W3207959141 creator A5058533608 @default.
- W3207959141 creator A5064964375 @default.
- W3207959141 date "2022-01-01" @default.
- W3207959141 modified "2023-10-18" @default.
- W3207959141 title "Geometric neuro-fuzzy transfer learning for in-cylinder pressure modelling of a diesel engine fuelled with raw microalgae oil" @default.
- W3207959141 cites W1180901138 @default.
- W3207959141 cites W2057396845 @default.
- W3207959141 cites W2091444466 @default.
- W3207959141 cites W2104229815 @default.
- W3207959141 cites W2153857567 @default.
- W3207959141 cites W2165698076 @default.
- W3207959141 cites W2338920170 @default.
- W3207959141 cites W2518910854 @default.
- W3207959141 cites W2521881951 @default.
- W3207959141 cites W2584566309 @default.
- W3207959141 cites W2613518054 @default.
- W3207959141 cites W2619344171 @default.
- W3207959141 cites W2755659093 @default.
- W3207959141 cites W2761196906 @default.
- W3207959141 cites W2786987490 @default.
- W3207959141 cites W2802499187 @default.
- W3207959141 cites W2805617603 @default.
- W3207959141 cites W2891485014 @default.
- W3207959141 cites W2903359684 @default.
- W3207959141 cites W2938291249 @default.
- W3207959141 cites W2942695233 @default.
- W3207959141 cites W2943605924 @default.
- W3207959141 cites W2947804572 @default.
- W3207959141 cites W2960182728 @default.
- W3207959141 cites W2975038609 @default.
- W3207959141 cites W2980246063 @default.
- W3207959141 cites W2980802462 @default.
- W3207959141 cites W2989818396 @default.
- W3207959141 cites W2998766999 @default.
- W3207959141 cites W3019501952 @default.
- W3207959141 cites W3023191599 @default.
- W3207959141 cites W3023449395 @default.
- W3207959141 cites W3027530105 @default.
- W3207959141 cites W3028999734 @default.
- W3207959141 cites W3041133507 @default.
- W3207959141 cites W3041949195 @default.
- W3207959141 cites W3044921080 @default.
- W3207959141 cites W3047460063 @default.
- W3207959141 cites W3092879398 @default.
- W3207959141 cites W3128212499 @default.
- W3207959141 doi "https://doi.org/10.1016/j.apenergy.2021.118014" @default.
- W3207959141 hasPublicationYear "2022" @default.
- W3207959141 type Work @default.
- W3207959141 sameAs 3207959141 @default.
- W3207959141 citedByCount "8" @default.
- W3207959141 countsByYear W32079591412022 @default.
- W3207959141 countsByYear W32079591412023 @default.
- W3207959141 crossrefType "journal-article" @default.
- W3207959141 hasAuthorship W3207959141A5043925036 @default.
- W3207959141 hasAuthorship W3207959141A5053524627 @default.
- W3207959141 hasAuthorship W3207959141A5058533608 @default.
- W3207959141 hasAuthorship W3207959141A5064964375 @default.
- W3207959141 hasBestOaLocation W32079591412 @default.
- W3207959141 hasConcept C127413603 @default.
- W3207959141 hasConcept C138171918 @default.
- W3207959141 hasConcept C171146098 @default.
- W3207959141 hasConcept C203311528 @default.
- W3207959141 hasConcept C21880701 @default.
- W3207959141 hasConcept C2780804531 @default.
- W3207959141 hasConcept C41008148 @default.
- W3207959141 hasConcept C53991642 @default.
- W3207959141 hasConcept C548081761 @default.
- W3207959141 hasConcept C78519656 @default.
- W3207959141 hasConceptScore W3207959141C127413603 @default.
- W3207959141 hasConceptScore W3207959141C138171918 @default.
- W3207959141 hasConceptScore W3207959141C171146098 @default.
- W3207959141 hasConceptScore W3207959141C203311528 @default.
- W3207959141 hasConceptScore W3207959141C21880701 @default.
- W3207959141 hasConceptScore W3207959141C2780804531 @default.
- W3207959141 hasConceptScore W3207959141C41008148 @default.
- W3207959141 hasConceptScore W3207959141C53991642 @default.
- W3207959141 hasConceptScore W3207959141C548081761 @default.
- W3207959141 hasConceptScore W3207959141C78519656 @default.
- W3207959141 hasFunder F4320334627 @default.
- W3207959141 hasLocation W32079591411 @default.
- W3207959141 hasLocation W32079591412 @default.
- W3207959141 hasLocation W32079591413 @default.
- W3207959141 hasOpenAccess W3207959141 @default.
- W3207959141 hasPrimaryLocation W32079591411 @default.
- W3207959141 hasRelatedWork W2002060428 @default.
- W3207959141 hasRelatedWork W2039485874 @default.
- W3207959141 hasRelatedWork W2062917701 @default.
- W3207959141 hasRelatedWork W2094185759 @default.
- W3207959141 hasRelatedWork W2110107054 @default.
- W3207959141 hasRelatedWork W2355920643 @default.
- W3207959141 hasRelatedWork W2472879551 @default.
- W3207959141 hasRelatedWork W2555548412 @default.
- W3207959141 hasRelatedWork W3156041323 @default.
- W3207959141 hasRelatedWork W3201969231 @default.