Matches in SemOpenAlex for { <https://semopenalex.org/work/W3207966246> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W3207966246 abstract "Neural stimulation can alleviate or even reverse paralysis and sensory deficits. Rapid technological advancements bring the possibility to develop complex and refined patterns of neurostimulation. However, multipronged interventions with high-density neural interfaces will require algorithmic frameworks to handle optimization in large parameter spaces. Here, we used an algorithmic class, Gaussian-Process (GP)-based Bayesian Optimization (BO), to solve this online problem. We show that GP-BO can efficiently explore the neurostimulation parameters’ space, exceeding extensive search performance after testing only a fraction of the possible combinations. It can quickly optimize multi-channel neurostimulation across diverse biological targets (brain and spinal cord), animal models (rats and non-human primates), in healthy and injured subjects. Moreover, since BO can embed and improve ‘prior’ expert/clinical knowledge, the performance can be dramatically enhanced even further. These results support broad establishment of learning agents as a structural part of neuroprosthetic design, enabling therapeutic personalization and maximization of intervention effectiveness." @default.
- W3207966246 created "2021-10-25" @default.
- W3207966246 creator A5011214071 @default.
- W3207966246 creator A5012113072 @default.
- W3207966246 creator A5033472420 @default.
- W3207966246 creator A5035805643 @default.
- W3207966246 creator A5043037494 @default.
- W3207966246 creator A5052476765 @default.
- W3207966246 creator A5053747229 @default.
- W3207966246 creator A5053749960 @default.
- W3207966246 creator A5088622325 @default.
- W3207966246 date "2021-01-01" @default.
- W3207966246 modified "2023-10-02" @default.
- W3207966246 title "Optimizing Neuroprosthetic Therapies via Autonomous Learning Agents" @default.
- W3207966246 cites W1696376591 @default.
- W3207966246 cites W1827801763 @default.
- W3207966246 cites W1831234257 @default.
- W3207966246 cites W1986012099 @default.
- W3207966246 cites W2011692453 @default.
- W3207966246 cites W2038514344 @default.
- W3207966246 cites W2052724777 @default.
- W3207966246 cites W2092830495 @default.
- W3207966246 cites W2095608310 @default.
- W3207966246 cites W2098907612 @default.
- W3207966246 cites W2105594224 @default.
- W3207966246 cites W2111489524 @default.
- W3207966246 cites W2127033470 @default.
- W3207966246 cites W2134500330 @default.
- W3207966246 cites W2147851954 @default.
- W3207966246 cites W2159122983 @default.
- W3207966246 cites W2192203593 @default.
- W3207966246 cites W2270484149 @default.
- W3207966246 cites W2437963089 @default.
- W3207966246 cites W2489741633 @default.
- W3207966246 cites W2531012506 @default.
- W3207966246 cites W2570821667 @default.
- W3207966246 cites W2767493192 @default.
- W3207966246 cites W2768680759 @default.
- W3207966246 cites W2775085189 @default.
- W3207966246 cites W2795354804 @default.
- W3207966246 cites W2801702694 @default.
- W3207966246 cites W2808112130 @default.
- W3207966246 cites W2882976771 @default.
- W3207966246 cites W2891480663 @default.
- W3207966246 cites W2897805052 @default.
- W3207966246 cites W2898429451 @default.
- W3207966246 cites W2972339980 @default.
- W3207966246 cites W2980609230 @default.
- W3207966246 cites W3009052095 @default.
- W3207966246 cites W3030427766 @default.
- W3207966246 cites W3136786274 @default.
- W3207966246 doi "https://doi.org/10.2139/ssrn.3925256" @default.
- W3207966246 hasPublicationYear "2021" @default.
- W3207966246 type Work @default.
- W3207966246 sameAs 3207966246 @default.
- W3207966246 citedByCount "0" @default.
- W3207966246 crossrefType "journal-article" @default.
- W3207966246 hasAuthorship W3207966246A5011214071 @default.
- W3207966246 hasAuthorship W3207966246A5012113072 @default.
- W3207966246 hasAuthorship W3207966246A5033472420 @default.
- W3207966246 hasAuthorship W3207966246A5035805643 @default.
- W3207966246 hasAuthorship W3207966246A5043037494 @default.
- W3207966246 hasAuthorship W3207966246A5052476765 @default.
- W3207966246 hasAuthorship W3207966246A5053747229 @default.
- W3207966246 hasAuthorship W3207966246A5053749960 @default.
- W3207966246 hasAuthorship W3207966246A5088622325 @default.
- W3207966246 hasConcept C107457646 @default.
- W3207966246 hasConcept C15744967 @default.
- W3207966246 hasConcept C169760540 @default.
- W3207966246 hasConcept C197525751 @default.
- W3207966246 hasConcept C41008148 @default.
- W3207966246 hasConcept C71924100 @default.
- W3207966246 hasConcept C99508421 @default.
- W3207966246 hasConceptScore W3207966246C107457646 @default.
- W3207966246 hasConceptScore W3207966246C15744967 @default.
- W3207966246 hasConceptScore W3207966246C169760540 @default.
- W3207966246 hasConceptScore W3207966246C197525751 @default.
- W3207966246 hasConceptScore W3207966246C41008148 @default.
- W3207966246 hasConceptScore W3207966246C71924100 @default.
- W3207966246 hasConceptScore W3207966246C99508421 @default.
- W3207966246 hasLocation W32079662461 @default.
- W3207966246 hasOpenAccess W3207966246 @default.
- W3207966246 hasPrimaryLocation W32079662461 @default.
- W3207966246 hasRelatedWork W1944726149 @default.
- W3207966246 hasRelatedWork W2005013020 @default.
- W3207966246 hasRelatedWork W2017201973 @default.
- W3207966246 hasRelatedWork W2058594930 @default.
- W3207966246 hasRelatedWork W2151596529 @default.
- W3207966246 hasRelatedWork W2748952813 @default.
- W3207966246 hasRelatedWork W2899084033 @default.
- W3207966246 hasRelatedWork W3093797122 @default.
- W3207966246 hasRelatedWork W4236334233 @default.
- W3207966246 hasRelatedWork W4256170100 @default.
- W3207966246 isParatext "false" @default.
- W3207966246 isRetracted "false" @default.
- W3207966246 magId "3207966246" @default.
- W3207966246 workType "article" @default.