Matches in SemOpenAlex for { <https://semopenalex.org/work/W3207967945> ?p ?o ?g. }
- W3207967945 endingPage "12" @default.
- W3207967945 startingPage "1" @default.
- W3207967945 abstract "The microseismic monitoring technique is widely applied to petroleum reservoirs to understand the process of hydraulic fracturing. Geophones continuously record the microseismic events triggered by fluid injection on the Earth’s surface or in monitoring wells. The microseismic event localization precision has a large impact on the performance of the technique. Deep learning has achieved significant progress in computer vision and natural language processing in recent years. We propose to use a deep convolutional neural network (CNN) to directly map the field records to their event locations. The biggest advantage of deep learning methods over conventional methods is that they can efficiently predict the characteristics of a huge amount of recorded data without human intervention. Thus, we use a CNN to predict the event location of field microseismic data that were recorded during a hydraulic fracturing process of a shale gas play in Oklahoma, the United States. We use synthetic data with extracted field noise from the records to train CNN. The synthetic training data allow us to produce the corresponding labels, and the extracted noise from the field data reduces the difference between the field and synthetic data. We use a correlation preprocessing step to avoid the need for event detection and picking of arrivals. We demonstrate that the proposed approach provides accurate microseismic event locations at a much faster speed than traditional imaging methods, such as time-reversal imaging. Comparison with an existing study on the same data is presented to evaluate the performance of the trained neural network." @default.
- W3207967945 created "2021-10-25" @default.
- W3207967945 creator A5032021877 @default.
- W3207967945 creator A5048597337 @default.
- W3207967945 creator A5071766835 @default.
- W3207967945 creator A5082388493 @default.
- W3207967945 date "2022-01-01" @default.
- W3207967945 modified "2023-09-27" @default.
- W3207967945 title "Data-Driven Microseismic Event Localization: An Application to the Oklahoma Arkoma Basin Hydraulic Fracturing Data" @default.
- W3207967945 cites W1536680647 @default.
- W3207967945 cites W1566401598 @default.
- W3207967945 cites W1940418797 @default.
- W3207967945 cites W1964084938 @default.
- W3207967945 cites W1973488326 @default.
- W3207967945 cites W1979863656 @default.
- W3207967945 cites W1989272690 @default.
- W3207967945 cites W1994981814 @default.
- W3207967945 cites W2025162351 @default.
- W3207967945 cites W2030308632 @default.
- W3207967945 cites W2034721899 @default.
- W3207967945 cites W2038217430 @default.
- W3207967945 cites W2053898798 @default.
- W3207967945 cites W2059918564 @default.
- W3207967945 cites W2062287513 @default.
- W3207967945 cites W2070295583 @default.
- W3207967945 cites W2086837829 @default.
- W3207967945 cites W2091432990 @default.
- W3207967945 cites W2093361576 @default.
- W3207967945 cites W2111406701 @default.
- W3207967945 cites W2117130368 @default.
- W3207967945 cites W2143419558 @default.
- W3207967945 cites W2147800946 @default.
- W3207967945 cites W2156163116 @default.
- W3207967945 cites W2170476175 @default.
- W3207967945 cites W2280554568 @default.
- W3207967945 cites W2330054981 @default.
- W3207967945 cites W2518277087 @default.
- W3207967945 cites W2619739357 @default.
- W3207967945 cites W2756113879 @default.
- W3207967945 cites W2758816065 @default.
- W3207967945 cites W2762410434 @default.
- W3207967945 cites W2767292437 @default.
- W3207967945 cites W2789793747 @default.
- W3207967945 cites W2883142087 @default.
- W3207967945 cites W2889230839 @default.
- W3207967945 cites W2891863585 @default.
- W3207967945 cites W2899365293 @default.
- W3207967945 cites W2910821168 @default.
- W3207967945 cites W2911316031 @default.
- W3207967945 cites W2913340405 @default.
- W3207967945 cites W3048385479 @default.
- W3207967945 cites W3048871735 @default.
- W3207967945 cites W3125520264 @default.
- W3207967945 cites W3163425731 @default.
- W3207967945 cites W3169662085 @default.
- W3207967945 cites W3175972099 @default.
- W3207967945 cites W4232867193 @default.
- W3207967945 doi "https://doi.org/10.1109/tgrs.2021.3120546" @default.
- W3207967945 hasPublicationYear "2022" @default.
- W3207967945 type Work @default.
- W3207967945 sameAs 3207967945 @default.
- W3207967945 citedByCount "6" @default.
- W3207967945 countsByYear W32079679452022 @default.
- W3207967945 countsByYear W32079679452023 @default.
- W3207967945 crossrefType "journal-article" @default.
- W3207967945 hasAuthorship W3207967945A5032021877 @default.
- W3207967945 hasAuthorship W3207967945A5048597337 @default.
- W3207967945 hasAuthorship W3207967945A5071766835 @default.
- W3207967945 hasAuthorship W3207967945A5082388493 @default.
- W3207967945 hasBestOaLocation W32079679452 @default.
- W3207967945 hasConcept C10551718 @default.
- W3207967945 hasConcept C108583219 @default.
- W3207967945 hasConcept C115961682 @default.
- W3207967945 hasConcept C121332964 @default.
- W3207967945 hasConcept C127313418 @default.
- W3207967945 hasConcept C154945302 @default.
- W3207967945 hasConcept C165205528 @default.
- W3207967945 hasConcept C2779096232 @default.
- W3207967945 hasConcept C2779662365 @default.
- W3207967945 hasConcept C34736171 @default.
- W3207967945 hasConcept C41008148 @default.
- W3207967945 hasConcept C54187759 @default.
- W3207967945 hasConcept C62520636 @default.
- W3207967945 hasConcept C7266685 @default.
- W3207967945 hasConcept C78762247 @default.
- W3207967945 hasConcept C81363708 @default.
- W3207967945 hasConcept C99498987 @default.
- W3207967945 hasConceptScore W3207967945C10551718 @default.
- W3207967945 hasConceptScore W3207967945C108583219 @default.
- W3207967945 hasConceptScore W3207967945C115961682 @default.
- W3207967945 hasConceptScore W3207967945C121332964 @default.
- W3207967945 hasConceptScore W3207967945C127313418 @default.
- W3207967945 hasConceptScore W3207967945C154945302 @default.
- W3207967945 hasConceptScore W3207967945C165205528 @default.
- W3207967945 hasConceptScore W3207967945C2779096232 @default.
- W3207967945 hasConceptScore W3207967945C2779662365 @default.
- W3207967945 hasConceptScore W3207967945C34736171 @default.
- W3207967945 hasConceptScore W3207967945C41008148 @default.