Matches in SemOpenAlex for { <https://semopenalex.org/work/W3207968086> ?p ?o ?g. }
- W3207968086 endingPage "203" @default.
- W3207968086 startingPage "196" @default.
- W3207968086 abstract "Ovarian cancer is one of the three most common gynecological cancers in the world, and is regarded as a priority in terms of women's cancer. In the past few years, many researchers have attempted to develop and apply artificial intelligence (AI) techniques to multiple clinical scenarios of ovarian cancer, especially in the field of medical imaging. AI-assisted imaging studies have involved computer tomography (CT), ultrasonography (US), and magnetic resonance imaging (MRI). In this review, we perform a literature search on the published studies that using AI techniques in the medical care of ovarian cancer, and bring up the advances in terms of four clinical aspects, including medical diagnosis, pathological classification, targeted biopsy guidance, and prognosis prediction. Meanwhile, current status and existing issues of the researches on AI application in ovarian cancer are discussed." @default.
- W3207968086 created "2021-10-25" @default.
- W3207968086 creator A5003649889 @default.
- W3207968086 creator A5006069500 @default.
- W3207968086 creator A5007509223 @default.
- W3207968086 creator A5014519132 @default.
- W3207968086 date "2021-01-01" @default.
- W3207968086 modified "2023-09-23" @default.
- W3207968086 title "Advances of Artificial Intelligence Application in Medical Imaging of Ovarian Cancers" @default.
- W3207968086 cites W1970515848 @default.
- W3207968086 cites W1979693095 @default.
- W3207968086 cites W2048594188 @default.
- W3207968086 cites W2054057449 @default.
- W3207968086 cites W2131593373 @default.
- W3207968086 cites W2174661749 @default.
- W3207968086 cites W2233192390 @default.
- W3207968086 cites W2284050342 @default.
- W3207968086 cites W2341495530 @default.
- W3207968086 cites W2529563513 @default.
- W3207968086 cites W2561358247 @default.
- W3207968086 cites W2595718694 @default.
- W3207968086 cites W2608976729 @default.
- W3207968086 cites W2614549267 @default.
- W3207968086 cites W2748037493 @default.
- W3207968086 cites W2768731904 @default.
- W3207968086 cites W2770261599 @default.
- W3207968086 cites W2784753274 @default.
- W3207968086 cites W2792878575 @default.
- W3207968086 cites W2802934060 @default.
- W3207968086 cites W2884184398 @default.
- W3207968086 cites W2886558446 @default.
- W3207968086 cites W2898798089 @default.
- W3207968086 cites W2899491031 @default.
- W3207968086 cites W2901094374 @default.
- W3207968086 cites W2913823430 @default.
- W3207968086 cites W2936844981 @default.
- W3207968086 cites W2947885304 @default.
- W3207968086 cites W2951141079 @default.
- W3207968086 cites W2953270703 @default.
- W3207968086 cites W2965465841 @default.
- W3207968086 cites W2991193094 @default.
- W3207968086 cites W2991724917 @default.
- W3207968086 cites W2992555631 @default.
- W3207968086 cites W2995749778 @default.
- W3207968086 cites W3025390501 @default.
- W3207968086 cites W3035201165 @default.
- W3207968086 cites W3038480451 @default.
- W3207968086 cites W3043133687 @default.
- W3207968086 cites W3046282410 @default.
- W3207968086 cites W3092126195 @default.
- W3207968086 cites W3113033270 @default.
- W3207968086 cites W3119005666 @default.
- W3207968086 cites W3152691420 @default.
- W3207968086 cites W3160498810 @default.
- W3207968086 cites W3169283283 @default.
- W3207968086 doi "https://doi.org/10.24920/003963" @default.
- W3207968086 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34666872" @default.
- W3207968086 hasPublicationYear "2021" @default.
- W3207968086 type Work @default.
- W3207968086 sameAs 3207968086 @default.
- W3207968086 citedByCount "5" @default.
- W3207968086 countsByYear W32079680862022 @default.
- W3207968086 countsByYear W32079680862023 @default.
- W3207968086 crossrefType "journal-article" @default.
- W3207968086 hasAuthorship W3207968086A5003649889 @default.
- W3207968086 hasAuthorship W3207968086A5006069500 @default.
- W3207968086 hasAuthorship W3207968086A5007509223 @default.
- W3207968086 hasAuthorship W3207968086A5014519132 @default.
- W3207968086 hasBestOaLocation W32079680861 @default.
- W3207968086 hasConcept C121608353 @default.
- W3207968086 hasConcept C126322002 @default.
- W3207968086 hasConcept C126838900 @default.
- W3207968086 hasConcept C142724271 @default.
- W3207968086 hasConcept C143409427 @default.
- W3207968086 hasConcept C154945302 @default.
- W3207968086 hasConcept C157170001 @default.
- W3207968086 hasConcept C19527891 @default.
- W3207968086 hasConcept C207886595 @default.
- W3207968086 hasConcept C2780427987 @default.
- W3207968086 hasConcept C31601959 @default.
- W3207968086 hasConcept C41008148 @default.
- W3207968086 hasConcept C529618451 @default.
- W3207968086 hasConcept C544519230 @default.
- W3207968086 hasConcept C71924100 @default.
- W3207968086 hasConceptScore W3207968086C121608353 @default.
- W3207968086 hasConceptScore W3207968086C126322002 @default.
- W3207968086 hasConceptScore W3207968086C126838900 @default.
- W3207968086 hasConceptScore W3207968086C142724271 @default.
- W3207968086 hasConceptScore W3207968086C143409427 @default.
- W3207968086 hasConceptScore W3207968086C154945302 @default.
- W3207968086 hasConceptScore W3207968086C157170001 @default.
- W3207968086 hasConceptScore W3207968086C19527891 @default.
- W3207968086 hasConceptScore W3207968086C207886595 @default.
- W3207968086 hasConceptScore W3207968086C2780427987 @default.
- W3207968086 hasConceptScore W3207968086C31601959 @default.
- W3207968086 hasConceptScore W3207968086C41008148 @default.
- W3207968086 hasConceptScore W3207968086C529618451 @default.
- W3207968086 hasConceptScore W3207968086C544519230 @default.