Matches in SemOpenAlex for { <https://semopenalex.org/work/W3207989093> ?p ?o ?g. }
- W3207989093 endingPage "7058" @default.
- W3207989093 startingPage "7058" @default.
- W3207989093 abstract "Wearable technologies are known to improve our quality of life. Among the various wearable devices, shoes are non-intrusive, lightweight, and can be used for outdoor activities. In this study, we estimated the energy consumption and heart rate in an environment (i.e., running on a treadmill) using smart shoes equipped with triaxial acceleration, triaxial gyroscope, and four-point pressure sensors. The proposed model uses the latest deep learning architecture which does not require any separate preprocessing. Moreover, it is possible to select the optimal sensor using a channel-wise attention mechanism to weigh the sensors depending on their contributions to the estimation of energy expenditure (EE) and heart rate (HR). The performance of the proposed model was evaluated using the root mean squared error (RMSE), mean absolute error (MAE), and coefficient of determination (R2). Moreover, the RMSE was 1.05 ± 0.15, MAE 0.83 ± 0.12 and R2 0.922 ± 0.005 in EE estimation. On the other hand, and RMSE was 7.87 ± 1.12, MAE 6.21 ± 0.86, and R2 0.897 ± 0.017 in HR estimation. In both estimations, the most effective sensor was the z axis of the accelerometer and gyroscope sensors. Through these results, it is demonstrated that the proposed model could contribute to the improvement of the performance of both EE and HR estimations by effectively selecting the optimal sensors during the active movements of participants." @default.
- W3207989093 created "2021-11-08" @default.
- W3207989093 creator A5007784537 @default.
- W3207989093 creator A5026447214 @default.
- W3207989093 creator A5059208248 @default.
- W3207989093 creator A5066831067 @default.
- W3207989093 creator A5072429332 @default.
- W3207989093 creator A5076807189 @default.
- W3207989093 creator A5077074455 @default.
- W3207989093 date "2021-10-25" @default.
- W3207989093 modified "2023-09-27" @default.
- W3207989093 title "Deep Learning-Based Optimal Smart Shoes Sensor Selection for Energy Expenditure and Heart Rate Estimation" @default.
- W3207989093 cites W2000185878 @default.
- W3207989093 cites W2026670008 @default.
- W3207989093 cites W2027279157 @default.
- W3207989093 cites W2030661231 @default.
- W3207989093 cites W2064675550 @default.
- W3207989093 cites W2095736475 @default.
- W3207989093 cites W2114006232 @default.
- W3207989093 cites W2133750711 @default.
- W3207989093 cites W2136429434 @default.
- W3207989093 cites W2137767184 @default.
- W3207989093 cites W2138572279 @default.
- W3207989093 cites W2145190362 @default.
- W3207989093 cites W2146609676 @default.
- W3207989093 cites W2152303446 @default.
- W3207989093 cites W2164041372 @default.
- W3207989093 cites W2416440676 @default.
- W3207989093 cites W2552313070 @default.
- W3207989093 cites W2563686712 @default.
- W3207989093 cites W2565944610 @default.
- W3207989093 cites W2591738485 @default.
- W3207989093 cites W2740884108 @default.
- W3207989093 cites W2784126800 @default.
- W3207989093 cites W2797694788 @default.
- W3207989093 cites W2804009169 @default.
- W3207989093 cites W2895127844 @default.
- W3207989093 cites W2900058591 @default.
- W3207989093 cites W2910688461 @default.
- W3207989093 cites W2915318211 @default.
- W3207989093 cites W2938366133 @default.
- W3207989093 cites W2953193031 @default.
- W3207989093 cites W3006339384 @default.
- W3207989093 cites W3016422726 @default.
- W3207989093 cites W3043257208 @default.
- W3207989093 cites W3137382383 @default.
- W3207989093 doi "https://doi.org/10.3390/s21217058" @default.
- W3207989093 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8587085" @default.
- W3207989093 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34770365" @default.
- W3207989093 hasPublicationYear "2021" @default.
- W3207989093 type Work @default.
- W3207989093 sameAs 3207989093 @default.
- W3207989093 citedByCount "3" @default.
- W3207989093 countsByYear W32079890932022 @default.
- W3207989093 countsByYear W32079890932023 @default.
- W3207989093 crossrefType "journal-article" @default.
- W3207989093 hasAuthorship W3207989093A5007784537 @default.
- W3207989093 hasAuthorship W3207989093A5026447214 @default.
- W3207989093 hasAuthorship W3207989093A5059208248 @default.
- W3207989093 hasAuthorship W3207989093A5066831067 @default.
- W3207989093 hasAuthorship W3207989093A5072429332 @default.
- W3207989093 hasAuthorship W3207989093A5076807189 @default.
- W3207989093 hasAuthorship W3207989093A5077074455 @default.
- W3207989093 hasBestOaLocation W32079890931 @default.
- W3207989093 hasConcept C105795698 @default.
- W3207989093 hasConcept C111919701 @default.
- W3207989093 hasConcept C119599485 @default.
- W3207989093 hasConcept C126838900 @default.
- W3207989093 hasConcept C127413603 @default.
- W3207989093 hasConcept C134018914 @default.
- W3207989093 hasConcept C139945424 @default.
- W3207989093 hasConcept C146978453 @default.
- W3207989093 hasConcept C149635348 @default.
- W3207989093 hasConcept C150594956 @default.
- W3207989093 hasConcept C158488048 @default.
- W3207989093 hasConcept C2775893642 @default.
- W3207989093 hasConcept C2777953023 @default.
- W3207989093 hasConcept C2780165032 @default.
- W3207989093 hasConcept C2988147884 @default.
- W3207989093 hasConcept C33923547 @default.
- W3207989093 hasConcept C41008148 @default.
- W3207989093 hasConcept C44154836 @default.
- W3207989093 hasConcept C54290928 @default.
- W3207989093 hasConcept C71924100 @default.
- W3207989093 hasConcept C84393581 @default.
- W3207989093 hasConcept C89805583 @default.
- W3207989093 hasConceptScore W3207989093C105795698 @default.
- W3207989093 hasConceptScore W3207989093C111919701 @default.
- W3207989093 hasConceptScore W3207989093C119599485 @default.
- W3207989093 hasConceptScore W3207989093C126838900 @default.
- W3207989093 hasConceptScore W3207989093C127413603 @default.
- W3207989093 hasConceptScore W3207989093C134018914 @default.
- W3207989093 hasConceptScore W3207989093C139945424 @default.
- W3207989093 hasConceptScore W3207989093C146978453 @default.
- W3207989093 hasConceptScore W3207989093C149635348 @default.
- W3207989093 hasConceptScore W3207989093C150594956 @default.
- W3207989093 hasConceptScore W3207989093C158488048 @default.
- W3207989093 hasConceptScore W3207989093C2775893642 @default.