Matches in SemOpenAlex for { <https://semopenalex.org/work/W3207991710> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W3207991710 abstract "In this work, a parameterized eigenvalue problem is analyzed for a phononic array in a 2D stress wave scattering setup, and a corresponding sensing application of this system is proposed to achieve source angle localization. The phononic domain consists of a periodic micro-structured medium, of which the eigen-wavevector band structure and the eigen-modes are exploited. The eigen-modes are naturally angle dependent due to changes in phases and periodic mode shapes determined by the incident angle. Intriguingly, the band exhibits angle-dependent transitions at the exceptional points (EPs) and critical angles (CAs), where the eigenvalues coincide or vanish. Coupled with these transitions, it is found that the eigen-modes switch their energy characteristics and symmetry patterns at these branch points, leading to enhanced angle dependence. Moreover, these eigen-modes also serve as the basis functions of the scattered waves. Therefore, the scattering response of the medium inherently possesses the angle-dependent properties, making this system naturally suitable for sensing applications. An artificial neural network (ANN) is trained with randomly weighted eigen-modes to achieve deep learning of the eigen features and angle dependence. The training data is derived only based on the eigen-modes of the unit cells. Nevertheless, the trained ANN can accurately identify the incident angle of an unknown scattering signal, with minimal side lobe levels and suppressed main lobe width. The ANN shows superior performance in comparison with standard delay-and-sum technique of estimating angle of arrival. The proposed application of ANN and micro-structured media highlights the physical importance of band structure topology and eigen-modes to a technological application, adds extra strength to the existing localization methods, and can be easily enhanced with the fast-growing data-driven techniques." @default.
- W3207991710 created "2021-11-08" @default.
- W3207991710 creator A5002618019 @default.
- W3207991710 creator A5019386958 @default.
- W3207991710 creator A5033508464 @default.
- W3207991710 creator A5049187891 @default.
- W3207991710 date "2021-08-26" @default.
- W3207991710 modified "2023-10-18" @default.
- W3207991710 title "Angle-dependent Phononic Dynamics for Deep Learning and Source Localization" @default.
- W3207991710 doi "https://doi.org/10.48550/arxiv.2108.12080" @default.
- W3207991710 hasPublicationYear "2021" @default.
- W3207991710 type Work @default.
- W3207991710 sameAs 3207991710 @default.
- W3207991710 citedByCount "0" @default.
- W3207991710 crossrefType "posted-content" @default.
- W3207991710 hasAuthorship W3207991710A5002618019 @default.
- W3207991710 hasAuthorship W3207991710A5019386958 @default.
- W3207991710 hasAuthorship W3207991710A5033508464 @default.
- W3207991710 hasAuthorship W3207991710A5049187891 @default.
- W3207991710 hasBestOaLocation W32079917101 @default.
- W3207991710 hasConcept C11413529 @default.
- W3207991710 hasConcept C120665830 @default.
- W3207991710 hasConcept C121332964 @default.
- W3207991710 hasConcept C134306372 @default.
- W3207991710 hasConcept C154945302 @default.
- W3207991710 hasConcept C158693339 @default.
- W3207991710 hasConcept C165464430 @default.
- W3207991710 hasConcept C186370098 @default.
- W3207991710 hasConcept C191486275 @default.
- W3207991710 hasConcept C24890656 @default.
- W3207991710 hasConcept C2524010 @default.
- W3207991710 hasConcept C2779886137 @default.
- W3207991710 hasConcept C30475298 @default.
- W3207991710 hasConcept C33923547 @default.
- W3207991710 hasConcept C41008148 @default.
- W3207991710 hasConcept C50644808 @default.
- W3207991710 hasConcept C62520636 @default.
- W3207991710 hasConceptScore W3207991710C11413529 @default.
- W3207991710 hasConceptScore W3207991710C120665830 @default.
- W3207991710 hasConceptScore W3207991710C121332964 @default.
- W3207991710 hasConceptScore W3207991710C134306372 @default.
- W3207991710 hasConceptScore W3207991710C154945302 @default.
- W3207991710 hasConceptScore W3207991710C158693339 @default.
- W3207991710 hasConceptScore W3207991710C165464430 @default.
- W3207991710 hasConceptScore W3207991710C186370098 @default.
- W3207991710 hasConceptScore W3207991710C191486275 @default.
- W3207991710 hasConceptScore W3207991710C24890656 @default.
- W3207991710 hasConceptScore W3207991710C2524010 @default.
- W3207991710 hasConceptScore W3207991710C2779886137 @default.
- W3207991710 hasConceptScore W3207991710C30475298 @default.
- W3207991710 hasConceptScore W3207991710C33923547 @default.
- W3207991710 hasConceptScore W3207991710C41008148 @default.
- W3207991710 hasConceptScore W3207991710C50644808 @default.
- W3207991710 hasConceptScore W3207991710C62520636 @default.
- W3207991710 hasLocation W32079917101 @default.
- W3207991710 hasOpenAccess W3207991710 @default.
- W3207991710 hasPrimaryLocation W32079917101 @default.
- W3207991710 hasRelatedWork W1746135021 @default.
- W3207991710 hasRelatedWork W2003165066 @default.
- W3207991710 hasRelatedWork W2056782349 @default.
- W3207991710 hasRelatedWork W2073789380 @default.
- W3207991710 hasRelatedWork W2093841753 @default.
- W3207991710 hasRelatedWork W2773466867 @default.
- W3207991710 hasRelatedWork W2802760758 @default.
- W3207991710 hasRelatedWork W3121555573 @default.
- W3207991710 hasRelatedWork W4377224679 @default.
- W3207991710 hasRelatedWork W4377232858 @default.
- W3207991710 isParatext "false" @default.
- W3207991710 isRetracted "false" @default.
- W3207991710 magId "3207991710" @default.
- W3207991710 workType "article" @default.