Matches in SemOpenAlex for { <https://semopenalex.org/work/W3207997783> ?p ?o ?g. }
- W3207997783 abstract "Even with the luxury of having abundant data, multi-label classification is widely known to be a challenging task to address. This work targets the problem of multi-label meta-learning, where a model learns to predict multiple labels within a query (e.g., an image) by just observing a few supporting examples. In doing so, we first propose a benchmark for Few-Shot Learning (FSL) with multiple labels per sample. Next, we discuss and extend several solutions specifically designed to address the conventional and single-label FSL, to work in the multi-label regime. Lastly, we introduce a neural module to estimate the label count of a given sample by exploiting the relational inference. We will show empirically the benefit of the label count module, the label propagation algorithm, and the extensions of conventional FSL methods on three challenging datasets, namely MS-COCO, iMaterialist, and Open MIC. Overall, our thorough experiments suggest that the proposed label-propagation algorithm in conjunction with the neural label count module (NLC) shall be considered as the method of choice." @default.
- W3207997783 created "2021-11-08" @default.
- W3207997783 creator A5002212263 @default.
- W3207997783 creator A5005324197 @default.
- W3207997783 creator A5021790939 @default.
- W3207997783 date "2021-10-26" @default.
- W3207997783 modified "2023-09-27" @default.
- W3207997783 title "Meta-Learning for Multi-Label Few-Shot Classification." @default.
- W3207997783 cites W1522417744 @default.
- W3207997783 cites W1861492603 @default.
- W3207997783 cites W2099471712 @default.
- W3207997783 cites W21006490 @default.
- W3207997783 cites W2108638925 @default.
- W3207997783 cites W2108892946 @default.
- W3207997783 cites W2143854982 @default.
- W3207997783 cites W2149466042 @default.
- W3207997783 cites W2154455818 @default.
- W3207997783 cites W2194321275 @default.
- W3207997783 cites W2410641892 @default.
- W3207997783 cites W2557626841 @default.
- W3207997783 cites W2558385255 @default.
- W3207997783 cites W2601450892 @default.
- W3207997783 cites W2605572715 @default.
- W3207997783 cites W2770929279 @default.
- W3207997783 cites W2886308074 @default.
- W3207997783 cites W2892122929 @default.
- W3207997783 cites W2895520533 @default.
- W3207997783 cites W2895671740 @default.
- W3207997783 cites W2899746634 @default.
- W3207997783 cites W2900082762 @default.
- W3207997783 cites W2917792613 @default.
- W3207997783 cites W2963300078 @default.
- W3207997783 cites W2963341924 @default.
- W3207997783 cites W2963350370 @default.
- W3207997783 cites W2963599420 @default.
- W3207997783 cites W2963745697 @default.
- W3207997783 cites W2963875806 @default.
- W3207997783 cites W2964105864 @default.
- W3207997783 cites W2964121744 @default.
- W3207997783 cites W2964135318 @default.
- W3207997783 cites W2964162033 @default.
- W3207997783 cites W2995278328 @default.
- W3207997783 cites W3012255272 @default.
- W3207997783 cites W3030401348 @default.
- W3207997783 cites W3035143213 @default.
- W3207997783 cites W3091905774 @default.
- W3207997783 cites W3095374178 @default.
- W3207997783 cites W3095891659 @default.
- W3207997783 cites W3101499503 @default.
- W3207997783 cites W3104324613 @default.
- W3207997783 cites W3116954826 @default.
- W3207997783 cites W3124006607 @default.
- W3207997783 cites W3170070145 @default.
- W3207997783 cites W3176276396 @default.
- W3207997783 cites W3177423475 @default.
- W3207997783 cites W3210978902 @default.
- W3207997783 cites W3213632375 @default.
- W3207997783 cites W652269744 @default.
- W3207997783 hasPublicationYear "2021" @default.
- W3207997783 type Work @default.
- W3207997783 sameAs 3207997783 @default.
- W3207997783 citedByCount "0" @default.
- W3207997783 crossrefType "posted-content" @default.
- W3207997783 hasAuthorship W3207997783A5002212263 @default.
- W3207997783 hasAuthorship W3207997783A5005324197 @default.
- W3207997783 hasAuthorship W3207997783A5021790939 @default.
- W3207997783 hasConcept C119857082 @default.
- W3207997783 hasConcept C124101348 @default.
- W3207997783 hasConcept C13280743 @default.
- W3207997783 hasConcept C153180895 @default.
- W3207997783 hasConcept C154945302 @default.
- W3207997783 hasConcept C162324750 @default.
- W3207997783 hasConcept C185592680 @default.
- W3207997783 hasConcept C185798385 @default.
- W3207997783 hasConcept C187736073 @default.
- W3207997783 hasConcept C198531522 @default.
- W3207997783 hasConcept C205649164 @default.
- W3207997783 hasConcept C2776214188 @default.
- W3207997783 hasConcept C2776482837 @default.
- W3207997783 hasConcept C2780451532 @default.
- W3207997783 hasConcept C41008148 @default.
- W3207997783 hasConcept C43617362 @default.
- W3207997783 hasConceptScore W3207997783C119857082 @default.
- W3207997783 hasConceptScore W3207997783C124101348 @default.
- W3207997783 hasConceptScore W3207997783C13280743 @default.
- W3207997783 hasConceptScore W3207997783C153180895 @default.
- W3207997783 hasConceptScore W3207997783C154945302 @default.
- W3207997783 hasConceptScore W3207997783C162324750 @default.
- W3207997783 hasConceptScore W3207997783C185592680 @default.
- W3207997783 hasConceptScore W3207997783C185798385 @default.
- W3207997783 hasConceptScore W3207997783C187736073 @default.
- W3207997783 hasConceptScore W3207997783C198531522 @default.
- W3207997783 hasConceptScore W3207997783C205649164 @default.
- W3207997783 hasConceptScore W3207997783C2776214188 @default.
- W3207997783 hasConceptScore W3207997783C2776482837 @default.
- W3207997783 hasConceptScore W3207997783C2780451532 @default.
- W3207997783 hasConceptScore W3207997783C41008148 @default.
- W3207997783 hasConceptScore W3207997783C43617362 @default.
- W3207997783 hasLocation W32079977831 @default.
- W3207997783 hasOpenAccess W3207997783 @default.