Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208045503> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W3208045503 endingPage "9904" @default.
- W3208045503 startingPage "9904" @default.
- W3208045503 abstract "Anomaly detection is an active research area within the machine learning and scene understanding fields. Despite the ambiguous definition, anomaly detection is considered an outlier detection in a given data based on normality constraints. The biggest problem in real-world anomaly detection applications is the high bias of the available data due to the class imbalance, meaning a limited amount of all possible anomalous and normal samples, thus making supervised learning model use difficult. This paper introduces an unsupervised and adversarially trained anomaly model with a unique encoder–decoder structure to address this issue. The proposed model distinguishes different age groups of people—namely child, adult, and elderly—from surveillance camera data in Busan, Republic of Korea. The proposed model has three major parts: a parallel-pipeline encoder with a conventional convolutional neural network and a dilated-convolutional neural network. The latent space vectors created at the end of both networks are concatenated. While the convolutional pipeline extracts local features, the dilated convolutional pipeline extracts the global features from the same input image. Concatenation of these features is sent as the input into the decoder, which has partial skip-connection elements from both pipelines. This, along with the concatenated feature vector, improves feature diversity. The input image is reconstructed from the feature vector through the stacked transpose convolution layers. Afterward, both the original input image and the corresponding reconstructed image are sent into the discriminator and are distinguished as real or fake. The image reconstruction loss and its corresponding latent space loss are considered for the training of the model and the adversarial Wasserstein loss. Only normal-designated class images are used during the training. The hypothesis is that if the model is trained with normal class images, then during the inference, the construction loss will be minimal. On the other hand, if the untrained anomalous class images are input through the model, the reconstruction loss value will be very high. This method is applied to distinguish different age clusters of people using unsupervised training. The proposed model outperforms the benchmark models in both the qualitative and the quantitative measurements." @default.
- W3208045503 created "2021-11-08" @default.
- W3208045503 creator A5011436316 @default.
- W3208045503 creator A5050024937 @default.
- W3208045503 creator A5075879162 @default.
- W3208045503 date "2021-10-23" @default.
- W3208045503 modified "2023-10-02" @default.
- W3208045503 title "Unsupervised Anomaly Approach to Pedestrian Age Classification from Surveillance Cameras Using an Adversarial Model with Skip-Connections" @default.
- W3208045503 cites W2003342787 @default.
- W3208045503 cites W2063485980 @default.
- W3208045503 cites W2095345875 @default.
- W3208045503 cites W2109469951 @default.
- W3208045503 cites W2115627867 @default.
- W3208045503 cites W2122646361 @default.
- W3208045503 cites W2123524119 @default.
- W3208045503 cites W2131344117 @default.
- W3208045503 cites W2137130182 @default.
- W3208045503 cites W2183341477 @default.
- W3208045503 cites W2194775991 @default.
- W3208045503 cites W2278186031 @default.
- W3208045503 cites W2289014754 @default.
- W3208045503 cites W2618530766 @default.
- W3208045503 cites W2796258071 @default.
- W3208045503 cites W2802803153 @default.
- W3208045503 cites W2932738842 @default.
- W3208045503 cites W2963446712 @default.
- W3208045503 cites W2964032056 @default.
- W3208045503 cites W2974916584 @default.
- W3208045503 cites W2978971541 @default.
- W3208045503 cites W2992194547 @default.
- W3208045503 cites W3000626837 @default.
- W3208045503 cites W3007935259 @default.
- W3208045503 cites W3041203747 @default.
- W3208045503 cites W3092806162 @default.
- W3208045503 cites W3133532155 @default.
- W3208045503 cites W3140741336 @default.
- W3208045503 cites W4239510810 @default.
- W3208045503 doi "https://doi.org/10.3390/app11219904" @default.
- W3208045503 hasPublicationYear "2021" @default.
- W3208045503 type Work @default.
- W3208045503 sameAs 3208045503 @default.
- W3208045503 citedByCount "1" @default.
- W3208045503 countsByYear W32080455032023 @default.
- W3208045503 crossrefType "journal-article" @default.
- W3208045503 hasAuthorship W3208045503A5011436316 @default.
- W3208045503 hasAuthorship W3208045503A5050024937 @default.
- W3208045503 hasAuthorship W3208045503A5075879162 @default.
- W3208045503 hasBestOaLocation W32080455031 @default.
- W3208045503 hasConcept C101738243 @default.
- W3208045503 hasConcept C108583219 @default.
- W3208045503 hasConcept C138885662 @default.
- W3208045503 hasConcept C153180895 @default.
- W3208045503 hasConcept C154945302 @default.
- W3208045503 hasConcept C2776401178 @default.
- W3208045503 hasConcept C31972630 @default.
- W3208045503 hasConcept C41008148 @default.
- W3208045503 hasConcept C41895202 @default.
- W3208045503 hasConcept C739882 @default.
- W3208045503 hasConcept C81363708 @default.
- W3208045503 hasConcept C83665646 @default.
- W3208045503 hasConceptScore W3208045503C101738243 @default.
- W3208045503 hasConceptScore W3208045503C108583219 @default.
- W3208045503 hasConceptScore W3208045503C138885662 @default.
- W3208045503 hasConceptScore W3208045503C153180895 @default.
- W3208045503 hasConceptScore W3208045503C154945302 @default.
- W3208045503 hasConceptScore W3208045503C2776401178 @default.
- W3208045503 hasConceptScore W3208045503C31972630 @default.
- W3208045503 hasConceptScore W3208045503C41008148 @default.
- W3208045503 hasConceptScore W3208045503C41895202 @default.
- W3208045503 hasConceptScore W3208045503C739882 @default.
- W3208045503 hasConceptScore W3208045503C81363708 @default.
- W3208045503 hasConceptScore W3208045503C83665646 @default.
- W3208045503 hasIssue "21" @default.
- W3208045503 hasLocation W32080455031 @default.
- W3208045503 hasOpenAccess W3208045503 @default.
- W3208045503 hasPrimaryLocation W32080455031 @default.
- W3208045503 hasRelatedWork W2669956259 @default.
- W3208045503 hasRelatedWork W2731899572 @default.
- W3208045503 hasRelatedWork W2772780115 @default.
- W3208045503 hasRelatedWork W3116150086 @default.
- W3208045503 hasRelatedWork W3133861977 @default.
- W3208045503 hasRelatedWork W3160458414 @default.
- W3208045503 hasRelatedWork W4200173597 @default.
- W3208045503 hasRelatedWork W4285195761 @default.
- W3208045503 hasRelatedWork W4312417841 @default.
- W3208045503 hasRelatedWork W4321369474 @default.
- W3208045503 hasVolume "11" @default.
- W3208045503 isParatext "false" @default.
- W3208045503 isRetracted "false" @default.
- W3208045503 magId "3208045503" @default.
- W3208045503 workType "article" @default.