Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208061707> ?p ?o ?g. }
- W3208061707 endingPage "4247" @default.
- W3208061707 startingPage "4247" @default.
- W3208061707 abstract "Hyperspectral images contain distinguishing spectral information and show great potential in the anomaly detection (AD) task which aims to extract discrepant targets from the background. However, most of the popular hyperspectral AD techniques are time consuming and suffer from poor detection performance due to noise disturbance. To address these issues, we propose an efficient and robust AD method for hyperspectral images. In our framework, principal component analysis (PCA) is adopted for spectral dimensionality reduction and to enhance the anti-noise ability. An improved guided filter with edge weight is constructed to purify the background and highlight the potential anomalies. Moreover, a diagonal matrix operation is designed to quickly accumulate the energy of each pixel and efficiently locate the abnormal targets. Extensive experiments conducted on the real-world hyperspectral datasets qualitatively and quantitatively demonstrate that, compared with the existing state-of-the-art approaches, the proposed method achieves higher detection accuracy with faster detection speed which verifies the superiority and effectiveness of the proposed method." @default.
- W3208061707 created "2021-11-08" @default.
- W3208061707 creator A5009088280 @default.
- W3208061707 creator A5039816737 @default.
- W3208061707 creator A5049895843 @default.
- W3208061707 creator A5051880364 @default.
- W3208061707 creator A5060842414 @default.
- W3208061707 creator A5083998595 @default.
- W3208061707 date "2021-10-22" @default.
- W3208061707 modified "2023-10-06" @default.
- W3208061707 title "An Efficient and Robust Framework for Hyperspectral Anomaly Detection" @default.
- W3208061707 cites W2002222589 @default.
- W3208061707 cites W2033888020 @default.
- W3208061707 cites W2047870694 @default.
- W3208061707 cites W2115927538 @default.
- W3208061707 cites W2124463804 @default.
- W3208061707 cites W2125188192 @default.
- W3208061707 cites W2133665775 @default.
- W3208061707 cites W2142192675 @default.
- W3208061707 cites W2142552707 @default.
- W3208061707 cites W2239725643 @default.
- W3208061707 cites W2288752886 @default.
- W3208061707 cites W2295576075 @default.
- W3208061707 cites W2603834682 @default.
- W3208061707 cites W2735361135 @default.
- W3208061707 cites W2754356769 @default.
- W3208061707 cites W2763820948 @default.
- W3208061707 cites W2767772398 @default.
- W3208061707 cites W2782930397 @default.
- W3208061707 cites W2801018674 @default.
- W3208061707 cites W2899327139 @default.
- W3208061707 cites W2900199428 @default.
- W3208061707 cites W2952956606 @default.
- W3208061707 cites W2955133371 @default.
- W3208061707 cites W2972480129 @default.
- W3208061707 cites W2973851347 @default.
- W3208061707 cites W2975506318 @default.
- W3208061707 cites W2995818283 @default.
- W3208061707 cites W3029601471 @default.
- W3208061707 cites W3029912995 @default.
- W3208061707 cites W3034493263 @default.
- W3208061707 cites W3103615857 @default.
- W3208061707 cites W3112261204 @default.
- W3208061707 doi "https://doi.org/10.3390/rs13214247" @default.
- W3208061707 hasPublicationYear "2021" @default.
- W3208061707 type Work @default.
- W3208061707 sameAs 3208061707 @default.
- W3208061707 citedByCount "3" @default.
- W3208061707 countsByYear W32080617072022 @default.
- W3208061707 countsByYear W32080617072023 @default.
- W3208061707 crossrefType "journal-article" @default.
- W3208061707 hasAuthorship W3208061707A5009088280 @default.
- W3208061707 hasAuthorship W3208061707A5039816737 @default.
- W3208061707 hasAuthorship W3208061707A5049895843 @default.
- W3208061707 hasAuthorship W3208061707A5051880364 @default.
- W3208061707 hasAuthorship W3208061707A5060842414 @default.
- W3208061707 hasAuthorship W3208061707A5083998595 @default.
- W3208061707 hasBestOaLocation W32080617071 @default.
- W3208061707 hasConcept C106131492 @default.
- W3208061707 hasConcept C115961682 @default.
- W3208061707 hasConcept C153180895 @default.
- W3208061707 hasConcept C154945302 @default.
- W3208061707 hasConcept C159078339 @default.
- W3208061707 hasConcept C160633673 @default.
- W3208061707 hasConcept C163294075 @default.
- W3208061707 hasConcept C27438332 @default.
- W3208061707 hasConcept C31972630 @default.
- W3208061707 hasConcept C41008148 @default.
- W3208061707 hasConcept C70518039 @default.
- W3208061707 hasConcept C739882 @default.
- W3208061707 hasConcept C99498987 @default.
- W3208061707 hasConceptScore W3208061707C106131492 @default.
- W3208061707 hasConceptScore W3208061707C115961682 @default.
- W3208061707 hasConceptScore W3208061707C153180895 @default.
- W3208061707 hasConceptScore W3208061707C154945302 @default.
- W3208061707 hasConceptScore W3208061707C159078339 @default.
- W3208061707 hasConceptScore W3208061707C160633673 @default.
- W3208061707 hasConceptScore W3208061707C163294075 @default.
- W3208061707 hasConceptScore W3208061707C27438332 @default.
- W3208061707 hasConceptScore W3208061707C31972630 @default.
- W3208061707 hasConceptScore W3208061707C41008148 @default.
- W3208061707 hasConceptScore W3208061707C70518039 @default.
- W3208061707 hasConceptScore W3208061707C739882 @default.
- W3208061707 hasConceptScore W3208061707C99498987 @default.
- W3208061707 hasFunder F4320321001 @default.
- W3208061707 hasIssue "21" @default.
- W3208061707 hasLocation W32080617071 @default.
- W3208061707 hasLocation W32080617072 @default.
- W3208061707 hasOpenAccess W3208061707 @default.
- W3208061707 hasPrimaryLocation W32080617071 @default.
- W3208061707 hasRelatedWork W1534000007 @default.
- W3208061707 hasRelatedWork W1585144779 @default.
- W3208061707 hasRelatedWork W2555612813 @default.
- W3208061707 hasRelatedWork W2609118866 @default.
- W3208061707 hasRelatedWork W2766300339 @default.
- W3208061707 hasRelatedWork W2909119362 @default.
- W3208061707 hasRelatedWork W2944632316 @default.
- W3208061707 hasRelatedWork W2951425100 @default.