Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208085809> ?p ?o ?g. }
- W3208085809 abstract "At present, Symmetric Positive Definite (SPD) matrix data is the most common non-Euclidean data in machine learning. Because SPD data don’t form a linear space, most machine learning algorithms can not be carried out directly on SPD data. The first purpose of this paper is to propose a new framework of SPD data machine learning, in which SPD data are transformed into the tangent spaces of Riemannian manifold, rather than a Reproducing Kernel Hilbert Space (RKHS) as usual. Domain adaption learning is a kind of machine learning. The second purpose of this paper is to apply the proposed framework to domain adaption learning (DAL), in which the architecture of bi-subspace learning is adopted. Compared with the commonly-used one subspace learning architecture, the proposed architecture provides a broader optimization space to meet the domain adaption criterion. At last, in order to further improve the classification accuracy, Linear Discriminant Analysis (LDA) regularization of source domain data is added. The experimental results on five real-world datasets demonstrate the out-performance of the proposed algorithm over other five related state-of-the-art algorithms." @default.
- W3208085809 created "2021-11-08" @default.
- W3208085809 creator A5014942240 @default.
- W3208085809 creator A5046109998 @default.
- W3208085809 creator A5077902355 @default.
- W3208085809 creator A5090181955 @default.
- W3208085809 date "2021-01-01" @default.
- W3208085809 modified "2023-09-24" @default.
- W3208085809 title "Domain Adaption Based on Symmetric Matrices Space Bi-subspace Learning and Source Linear Discriminant Analysis Regularization" @default.
- W3208085809 cites W1484456269 @default.
- W3208085809 cites W1576445103 @default.
- W3208085809 cites W1591385104 @default.
- W3208085809 cites W1910772337 @default.
- W3208085809 cites W1922045146 @default.
- W3208085809 cites W1934241014 @default.
- W3208085809 cites W1964321627 @default.
- W3208085809 cites W1971221757 @default.
- W3208085809 cites W1983496390 @default.
- W3208085809 cites W2013261143 @default.
- W3208085809 cites W2050022153 @default.
- W3208085809 cites W2057266281 @default.
- W3208085809 cites W2064447488 @default.
- W3208085809 cites W2096943734 @default.
- W3208085809 cites W2104068492 @default.
- W3208085809 cites W2107298017 @default.
- W3208085809 cites W2111362445 @default.
- W3208085809 cites W2115403315 @default.
- W3208085809 cites W2128053425 @default.
- W3208085809 cites W2137894166 @default.
- W3208085809 cites W2141830256 @default.
- W3208085809 cites W2149652297 @default.
- W3208085809 cites W2169579681 @default.
- W3208085809 cites W2240559667 @default.
- W3208085809 cites W2294193936 @default.
- W3208085809 cites W2294278055 @default.
- W3208085809 cites W2344824106 @default.
- W3208085809 cites W2422697180 @default.
- W3208085809 cites W2464293894 @default.
- W3208085809 cites W2515363767 @default.
- W3208085809 cites W2575262780 @default.
- W3208085809 cites W2579628011 @default.
- W3208085809 cites W2584047031 @default.
- W3208085809 cites W2736806241 @default.
- W3208085809 cites W2797867454 @default.
- W3208085809 cites W2801477643 @default.
- W3208085809 cites W2889240504 @default.
- W3208085809 cites W2896450202 @default.
- W3208085809 cites W2897493810 @default.
- W3208085809 cites W2902457328 @default.
- W3208085809 cites W2942519784 @default.
- W3208085809 cites W2963693396 @default.
- W3208085809 cites W2963764968 @default.
- W3208085809 cites W2964178928 @default.
- W3208085809 cites W2964575823 @default.
- W3208085809 cites W2981608175 @default.
- W3208085809 cites W2992062578 @default.
- W3208085809 cites W3001280569 @default.
- W3208085809 cites W3002335951 @default.
- W3208085809 cites W3003080475 @default.
- W3208085809 cites W3005485628 @default.
- W3208085809 cites W3012897833 @default.
- W3208085809 cites W3051559074 @default.
- W3208085809 cites W3092671425 @default.
- W3208085809 cites W3110547139 @default.
- W3208085809 cites W3168471360 @default.
- W3208085809 cites W3177168257 @default.
- W3208085809 cites W566612420 @default.
- W3208085809 cites W78159342 @default.
- W3208085809 doi "https://doi.org/10.1109/access.2021.3123470" @default.
- W3208085809 hasPublicationYear "2021" @default.
- W3208085809 type Work @default.
- W3208085809 sameAs 3208085809 @default.
- W3208085809 citedByCount "0" @default.
- W3208085809 crossrefType "journal-article" @default.
- W3208085809 hasAuthorship W3208085809A5014942240 @default.
- W3208085809 hasAuthorship W3208085809A5046109998 @default.
- W3208085809 hasAuthorship W3208085809A5077902355 @default.
- W3208085809 hasAuthorship W3208085809A5090181955 @default.
- W3208085809 hasBestOaLocation W32080858091 @default.
- W3208085809 hasConcept C11413529 @default.
- W3208085809 hasConcept C118615104 @default.
- W3208085809 hasConcept C122280245 @default.
- W3208085809 hasConcept C12267149 @default.
- W3208085809 hasConcept C134306372 @default.
- W3208085809 hasConcept C153180895 @default.
- W3208085809 hasConcept C154945302 @default.
- W3208085809 hasConcept C157157409 @default.
- W3208085809 hasConcept C186450821 @default.
- W3208085809 hasConcept C202444582 @default.
- W3208085809 hasConcept C2776135515 @default.
- W3208085809 hasConcept C32834561 @default.
- W3208085809 hasConcept C33923547 @default.
- W3208085809 hasConcept C41008148 @default.
- W3208085809 hasConcept C62799726 @default.
- W3208085809 hasConcept C69738355 @default.
- W3208085809 hasConcept C74193536 @default.
- W3208085809 hasConcept C80884492 @default.
- W3208085809 hasConceptScore W3208085809C11413529 @default.
- W3208085809 hasConceptScore W3208085809C118615104 @default.
- W3208085809 hasConceptScore W3208085809C122280245 @default.