Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208100019> ?p ?o ?g. }
- W3208100019 endingPage "112769" @default.
- W3208100019 startingPage "112769" @default.
- W3208100019 abstract "Diameter frequency distributions provide essential information for estimating timber assortment, monitoring carbon stocks, and formulating forest management measures. In this study, we estimated diameter distribution utilizing unmanned aerial vehicle laser scanning (ULS) data by applying three Weibull distribution modeling methods: (1) parameter prediction method (PPM); (2) moment-based parameter recovery method (PRMM); and (3) percentile-based parameter recovery method (PRMP). The variables used in Weibull distribution modeling methods were combined with stand density as response groups to be modeled with ULS metrics. Considering the hierarchical structure of ULS data and the autocorrelation among sub-models, mixed-effects seemingly unrelated regression (SURM) were applied to take into account both spatial and cross-model correlations. The experiments were conducted for 11 sites of larch plantations using leave-one-out cross-validation (LOOCV). The diameter distribution was estimated and calibrated by the observed stand density considering the correlations of sub-models' random-effects. The results demonstrated that applying a relatively small number of plots (1 to 6) and estimated best linear predictor (EBLUP) for local calibration could improve the prediction performance. The optimal results were obtained from PRMM with six calibrated plots, and the average Reynolds error index was 45.30. Furthermore, simulation applications with different pulse densities were applied and suggested that calibration could also improve the estimation performance but brought little improvement on estimation stability, far lesser than the impact of point cloud density. This study provides an improved approach for diameter distribution estimation and benefits for operational forest applications using remote sensing data." @default.
- W3208100019 created "2021-11-08" @default.
- W3208100019 creator A5008134407 @default.
- W3208100019 creator A5021687717 @default.
- W3208100019 creator A5045884113 @default.
- W3208100019 creator A5059346008 @default.
- W3208100019 creator A5065775067 @default.
- W3208100019 creator A5079939601 @default.
- W3208100019 creator A5090473857 @default.
- W3208100019 date "2022-01-01" @default.
- W3208100019 modified "2023-10-18" @default.
- W3208100019 title "Estimation and calibration of stem diameter distribution using UAV laser scanning data: A case study for larch (Larix olgensis) forests in Northeast China" @default.
- W3208100019 cites W1572690165 @default.
- W3208100019 cites W1839152777 @default.
- W3208100019 cites W1965053285 @default.
- W3208100019 cites W1984000480 @default.
- W3208100019 cites W1988246220 @default.
- W3208100019 cites W1995357577 @default.
- W3208100019 cites W1996263757 @default.
- W3208100019 cites W1997120165 @default.
- W3208100019 cites W2000366752 @default.
- W3208100019 cites W2015306388 @default.
- W3208100019 cites W2026885798 @default.
- W3208100019 cites W2038226208 @default.
- W3208100019 cites W2040647925 @default.
- W3208100019 cites W2054559550 @default.
- W3208100019 cites W2055755105 @default.
- W3208100019 cites W2061969208 @default.
- W3208100019 cites W2064561861 @default.
- W3208100019 cites W2072334158 @default.
- W3208100019 cites W2072474981 @default.
- W3208100019 cites W2090166704 @default.
- W3208100019 cites W2093449654 @default.
- W3208100019 cites W2098935748 @default.
- W3208100019 cites W2103754106 @default.
- W3208100019 cites W2106780766 @default.
- W3208100019 cites W2109631166 @default.
- W3208100019 cites W2117966692 @default.
- W3208100019 cites W2125658492 @default.
- W3208100019 cites W2133374292 @default.
- W3208100019 cites W2137933418 @default.
- W3208100019 cites W2143523796 @default.
- W3208100019 cites W2147142297 @default.
- W3208100019 cites W2159352923 @default.
- W3208100019 cites W2168423648 @default.
- W3208100019 cites W2169874044 @default.
- W3208100019 cites W2224722989 @default.
- W3208100019 cites W2233456439 @default.
- W3208100019 cites W2316246781 @default.
- W3208100019 cites W2321728502 @default.
- W3208100019 cites W2325115425 @default.
- W3208100019 cites W2436494909 @default.
- W3208100019 cites W2465992516 @default.
- W3208100019 cites W2555003865 @default.
- W3208100019 cites W2602986670 @default.
- W3208100019 cites W2614064565 @default.
- W3208100019 cites W2621614773 @default.
- W3208100019 cites W2767993599 @default.
- W3208100019 cites W2788356053 @default.
- W3208100019 cites W2790767922 @default.
- W3208100019 cites W2898748870 @default.
- W3208100019 cites W2900062227 @default.
- W3208100019 cites W2909975549 @default.
- W3208100019 cites W2941004385 @default.
- W3208100019 cites W2964832001 @default.
- W3208100019 cites W2983096079 @default.
- W3208100019 cites W2987580484 @default.
- W3208100019 cites W2997685398 @default.
- W3208100019 cites W3006060575 @default.
- W3208100019 cites W3012979567 @default.
- W3208100019 cites W3013872530 @default.
- W3208100019 cites W3017035390 @default.
- W3208100019 cites W3018921753 @default.
- W3208100019 cites W3048528788 @default.
- W3208100019 cites W3093252501 @default.
- W3208100019 doi "https://doi.org/10.1016/j.rse.2021.112769" @default.
- W3208100019 hasPublicationYear "2022" @default.
- W3208100019 type Work @default.
- W3208100019 sameAs 3208100019 @default.
- W3208100019 citedByCount "11" @default.
- W3208100019 countsByYear W32081000192022 @default.
- W3208100019 countsByYear W32081000192023 @default.
- W3208100019 crossrefType "journal-article" @default.
- W3208100019 hasAuthorship W3208100019A5008134407 @default.
- W3208100019 hasAuthorship W3208100019A5021687717 @default.
- W3208100019 hasAuthorship W3208100019A5045884113 @default.
- W3208100019 hasAuthorship W3208100019A5059346008 @default.
- W3208100019 hasAuthorship W3208100019A5065775067 @default.
- W3208100019 hasAuthorship W3208100019A5079939601 @default.
- W3208100019 hasAuthorship W3208100019A5090473857 @default.
- W3208100019 hasConcept C105795698 @default.
- W3208100019 hasConcept C120665830 @default.
- W3208100019 hasConcept C121332964 @default.
- W3208100019 hasConcept C122048520 @default.
- W3208100019 hasConcept C141349535 @default.
- W3208100019 hasConcept C165838908 @default.
- W3208100019 hasConcept C173291955 @default.
- W3208100019 hasConcept C18903297 @default.