Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208111191> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W3208111191 endingPage "7376" @default.
- W3208111191 startingPage "7376" @default.
- W3208111191 abstract "Predictive maintenance (PdM) has the potential to reduce industrial costs by anticipating failures and extending the work life of components. Nowadays, factories are monitoring their assets and most collected data belong to correct working conditions. Thereby, semi-supervised data-driven models are relevant to enable PdM application by learning from assets’ data. However, their main challenges for application in industry are achieving high accuracy on anomaly detection, diagnosis of novel failures, and adaptability to changing environmental and operational conditions (EOC). This article aims to tackle these challenges, experimenting with algorithms in press machine data of a production line. Initially, state-of-the-art and classic data-driven anomaly detection model performance is compared, including 2D autoencoder, null-space, principal component analysis (PCA), one-class support vector machines (OC-SVM), and extreme learning machine (ELM) algorithms. Then, diagnosis tools are developed supported on autoencoder’s latent space feature vector, including clustering and projection algorithms to cluster data of synthetic failure types semi-supervised. In addition, explainable artificial intelligence techniques have enabled to track the autoencoder’s loss with input data to detect anomalous signals. Finally, transfer learning is applied to adapt autoencoders to changing EOC data of the same process. The data-driven techniques used in this work can be adapted to address other industrial use cases, helping stakeholders gain trust and thus promote the adoption of data-driven PdM systems in smart factories." @default.
- W3208111191 created "2021-11-08" @default.
- W3208111191 creator A5011342556 @default.
- W3208111191 creator A5020252362 @default.
- W3208111191 creator A5041843007 @default.
- W3208111191 creator A5059994422 @default.
- W3208111191 creator A5072291754 @default.
- W3208111191 date "2021-08-11" @default.
- W3208111191 modified "2023-10-06" @default.
- W3208111191 title "Adaptable and Explainable Predictive Maintenance: Semi-Supervised Deep Learning for Anomaly Detection and Diagnosis in Press Machine Data" @default.
- W3208111191 cites W1975132127 @default.
- W3208111191 cites W1990517717 @default.
- W3208111191 cites W2089468765 @default.
- W3208111191 cites W2111072639 @default.
- W3208111191 cites W2135663228 @default.
- W3208111191 cites W2160642098 @default.
- W3208111191 cites W2763583057 @default.
- W3208111191 cites W2904029507 @default.
- W3208111191 cites W2975595448 @default.
- W3208111191 cites W2978047770 @default.
- W3208111191 cites W2996852626 @default.
- W3208111191 cites W2996904916 @default.
- W3208111191 cites W306662213 @default.
- W3208111191 cites W3106586287 @default.
- W3208111191 cites W3126471189 @default.
- W3208111191 cites W3127692495 @default.
- W3208111191 cites W3134583924 @default.
- W3208111191 cites W3134726903 @default.
- W3208111191 cites W3173360689 @default.
- W3208111191 doi "https://doi.org/10.3390/app11167376" @default.
- W3208111191 hasPublicationYear "2021" @default.
- W3208111191 type Work @default.
- W3208111191 sameAs 3208111191 @default.
- W3208111191 citedByCount "14" @default.
- W3208111191 countsByYear W32081111912021 @default.
- W3208111191 countsByYear W32081111912022 @default.
- W3208111191 countsByYear W32081111912023 @default.
- W3208111191 crossrefType "journal-article" @default.
- W3208111191 hasAuthorship W3208111191A5011342556 @default.
- W3208111191 hasAuthorship W3208111191A5020252362 @default.
- W3208111191 hasAuthorship W3208111191A5041843007 @default.
- W3208111191 hasAuthorship W3208111191A5059994422 @default.
- W3208111191 hasAuthorship W3208111191A5072291754 @default.
- W3208111191 hasBestOaLocation W32081111911 @default.
- W3208111191 hasConcept C101738243 @default.
- W3208111191 hasConcept C108583219 @default.
- W3208111191 hasConcept C119857082 @default.
- W3208111191 hasConcept C12267149 @default.
- W3208111191 hasConcept C124101348 @default.
- W3208111191 hasConcept C127413603 @default.
- W3208111191 hasConcept C154945302 @default.
- W3208111191 hasConcept C200601418 @default.
- W3208111191 hasConcept C41008148 @default.
- W3208111191 hasConcept C70452415 @default.
- W3208111191 hasConcept C73555534 @default.
- W3208111191 hasConcept C739882 @default.
- W3208111191 hasConceptScore W3208111191C101738243 @default.
- W3208111191 hasConceptScore W3208111191C108583219 @default.
- W3208111191 hasConceptScore W3208111191C119857082 @default.
- W3208111191 hasConceptScore W3208111191C12267149 @default.
- W3208111191 hasConceptScore W3208111191C124101348 @default.
- W3208111191 hasConceptScore W3208111191C127413603 @default.
- W3208111191 hasConceptScore W3208111191C154945302 @default.
- W3208111191 hasConceptScore W3208111191C200601418 @default.
- W3208111191 hasConceptScore W3208111191C41008148 @default.
- W3208111191 hasConceptScore W3208111191C70452415 @default.
- W3208111191 hasConceptScore W3208111191C73555534 @default.
- W3208111191 hasConceptScore W3208111191C739882 @default.
- W3208111191 hasFunder F4320330231 @default.
- W3208111191 hasIssue "16" @default.
- W3208111191 hasLocation W32081111911 @default.
- W3208111191 hasLocation W32081111912 @default.
- W3208111191 hasLocation W32081111913 @default.
- W3208111191 hasOpenAccess W3208111191 @default.
- W3208111191 hasPrimaryLocation W32081111911 @default.
- W3208111191 hasRelatedWork W2669956259 @default.
- W3208111191 hasRelatedWork W2784313445 @default.
- W3208111191 hasRelatedWork W2939353110 @default.
- W3208111191 hasRelatedWork W3165463024 @default.
- W3208111191 hasRelatedWork W4223943233 @default.
- W3208111191 hasRelatedWork W4287178339 @default.
- W3208111191 hasRelatedWork W4312200629 @default.
- W3208111191 hasRelatedWork W4327774331 @default.
- W3208111191 hasRelatedWork W4360585206 @default.
- W3208111191 hasRelatedWork W4380075502 @default.
- W3208111191 hasVolume "11" @default.
- W3208111191 isParatext "false" @default.
- W3208111191 isRetracted "false" @default.
- W3208111191 magId "3208111191" @default.
- W3208111191 workType "article" @default.