Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208113211> ?p ?o ?g. }
- W3208113211 endingPage "5388" @default.
- W3208113211 startingPage "5388" @default.
- W3208113211 abstract "Matrix assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) can determine the spatial distribution of analytes such as protein distributions in a tissue section according to their mass-to-charge ratio. Here, we explored the clinical potential of machine learning (ML) applied to MALDI MSI data for cancer diagnostic classification using tissue microarrays (TMAs) on 302 colorectal (CRC) and 257 endometrial cancer (EC)) patients. ML based on deep neural networks discriminated colorectal tumour from normal tissue with an overall accuracy of 98% in balanced cross-validation (98.2% sensitivity and 98.6% specificity). Moreover, our machine learning approach predicted the presence of lymph node metastasis (LNM) for primary tumours of EC with an accuracy of 80% (90% sensitivity and 69% specificity). Our results demonstrate the capability of MALDI MSI for complementing classic histopathological examination for cancer diagnostic applications." @default.
- W3208113211 created "2021-11-08" @default.
- W3208113211 creator A5000677611 @default.
- W3208113211 creator A5003053999 @default.
- W3208113211 creator A5018376840 @default.
- W3208113211 creator A5023008141 @default.
- W3208113211 creator A5034072237 @default.
- W3208113211 creator A5048188053 @default.
- W3208113211 creator A5063215428 @default.
- W3208113211 creator A5069134231 @default.
- W3208113211 creator A5075327664 @default.
- W3208113211 creator A5075372371 @default.
- W3208113211 creator A5082156235 @default.
- W3208113211 date "2021-10-27" @default.
- W3208113211 modified "2023-09-27" @default.
- W3208113211 title "Cancer Tissue Classification Using Supervised Machine Learning Applied to MALDI Mass Spectrometry Imaging" @default.
- W3208113211 cites W1932987343 @default.
- W3208113211 cites W1984502485 @default.
- W3208113211 cites W2035419520 @default.
- W3208113211 cites W2042028553 @default.
- W3208113211 cites W2050102383 @default.
- W3208113211 cites W2057652593 @default.
- W3208113211 cites W2085903081 @default.
- W3208113211 cites W2105509337 @default.
- W3208113211 cites W2127740715 @default.
- W3208113211 cites W2130353536 @default.
- W3208113211 cites W2318000616 @default.
- W3208113211 cites W2396153374 @default.
- W3208113211 cites W2536233805 @default.
- W3208113211 cites W2540863681 @default.
- W3208113211 cites W2570937140 @default.
- W3208113211 cites W2611214388 @default.
- W3208113211 cites W2792871546 @default.
- W3208113211 cites W2899760200 @default.
- W3208113211 cites W2900334494 @default.
- W3208113211 cites W2901207366 @default.
- W3208113211 cites W2904618174 @default.
- W3208113211 cites W2972565281 @default.
- W3208113211 cites W2972974935 @default.
- W3208113211 cites W2979874034 @default.
- W3208113211 cites W3017343831 @default.
- W3208113211 cites W3045566113 @default.
- W3208113211 cites W3081517209 @default.
- W3208113211 doi "https://doi.org/10.3390/cancers13215388" @default.
- W3208113211 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8582378" @default.
- W3208113211 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34771551" @default.
- W3208113211 hasPublicationYear "2021" @default.
- W3208113211 type Work @default.
- W3208113211 sameAs 3208113211 @default.
- W3208113211 citedByCount "14" @default.
- W3208113211 countsByYear W32081132112022 @default.
- W3208113211 countsByYear W32081132112023 @default.
- W3208113211 crossrefType "journal-article" @default.
- W3208113211 hasAuthorship W3208113211A5000677611 @default.
- W3208113211 hasAuthorship W3208113211A5003053999 @default.
- W3208113211 hasAuthorship W3208113211A5018376840 @default.
- W3208113211 hasAuthorship W3208113211A5023008141 @default.
- W3208113211 hasAuthorship W3208113211A5034072237 @default.
- W3208113211 hasAuthorship W3208113211A5048188053 @default.
- W3208113211 hasAuthorship W3208113211A5063215428 @default.
- W3208113211 hasAuthorship W3208113211A5069134231 @default.
- W3208113211 hasAuthorship W3208113211A5075327664 @default.
- W3208113211 hasAuthorship W3208113211A5075372371 @default.
- W3208113211 hasAuthorship W3208113211A5082156235 @default.
- W3208113211 hasBestOaLocation W32081132111 @default.
- W3208113211 hasConcept C101092202 @default.
- W3208113211 hasConcept C10390740 @default.
- W3208113211 hasConcept C121608353 @default.
- W3208113211 hasConcept C126322002 @default.
- W3208113211 hasConcept C142724271 @default.
- W3208113211 hasConcept C150394285 @default.
- W3208113211 hasConcept C154945302 @default.
- W3208113211 hasConcept C162356407 @default.
- W3208113211 hasConcept C162711632 @default.
- W3208113211 hasConcept C178790620 @default.
- W3208113211 hasConcept C185592680 @default.
- W3208113211 hasConcept C193270364 @default.
- W3208113211 hasConcept C24066741 @default.
- W3208113211 hasConcept C41008148 @default.
- W3208113211 hasConcept C43617362 @default.
- W3208113211 hasConcept C526805850 @default.
- W3208113211 hasConcept C71924100 @default.
- W3208113211 hasConcept C75280812 @default.
- W3208113211 hasConceptScore W3208113211C101092202 @default.
- W3208113211 hasConceptScore W3208113211C10390740 @default.
- W3208113211 hasConceptScore W3208113211C121608353 @default.
- W3208113211 hasConceptScore W3208113211C126322002 @default.
- W3208113211 hasConceptScore W3208113211C142724271 @default.
- W3208113211 hasConceptScore W3208113211C150394285 @default.
- W3208113211 hasConceptScore W3208113211C154945302 @default.
- W3208113211 hasConceptScore W3208113211C162356407 @default.
- W3208113211 hasConceptScore W3208113211C162711632 @default.
- W3208113211 hasConceptScore W3208113211C178790620 @default.
- W3208113211 hasConceptScore W3208113211C185592680 @default.
- W3208113211 hasConceptScore W3208113211C193270364 @default.
- W3208113211 hasConceptScore W3208113211C24066741 @default.
- W3208113211 hasConceptScore W3208113211C41008148 @default.
- W3208113211 hasConceptScore W3208113211C43617362 @default.