Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208113363> ?p ?o ?g. }
- W3208113363 endingPage "184" @default.
- W3208113363 startingPage "173" @default.
- W3208113363 abstract "In the context of 2D face biometrics, pose represents one challenging intra-class variation that, over the years, has been approached in a number of different ways, such as through inherently pose-invariant features, or by means of specifically trained deep networks, or even by frontalization techniques aimed to restore a canonical pose. To this regard, the idea behind this paper is to perform head pose estimation (HPE) previous to the face recognition step, so that the probe’s resulting yaw, pitch and roll values can be used to possibly find the pose-wise closest elements in the gallery, thus reducing one-to-many matching time. We exploit a common approach to both pose estimation and feature matching, where fractal encoding is used to extract a feature vector and to compare it to a reference template through a metric distance for both HPE and the facial recognition. Experiments conducted on the Biwi Kinect Head Pose database and the AFLW2000 dataset show state-of-the art level of precision for head pose estimation along with a 10x efficiency boost in the overall face recognition task, compared to popular deep learning approaches, whilst achieving also an edge in terms of recognition accuracy." @default.
- W3208113363 created "2021-11-08" @default.
- W3208113363 creator A5018403922 @default.
- W3208113363 creator A5022728528 @default.
- W3208113363 creator A5057168111 @default.
- W3208113363 creator A5074877643 @default.
- W3208113363 date "2022-04-01" @default.
- W3208113363 modified "2023-10-17" @default.
- W3208113363 title "PIFS Scheme for HEad Pose Estimation Aimed at Faster Face Recognition" @default.
- W3208113363 cites W1524476480 @default.
- W3208113363 cites W1643185111 @default.
- W3208113363 cites W1682484686 @default.
- W3208113363 cites W1897749422 @default.
- W3208113363 cites W1964357740 @default.
- W3208113363 cites W1989702938 @default.
- W3208113363 cites W1993112217 @default.
- W3208113363 cites W1999533590 @default.
- W3208113363 cites W2031614119 @default.
- W3208113363 cites W2087681821 @default.
- W3208113363 cites W2132984323 @default.
- W3208113363 cites W2145287260 @default.
- W3208113363 cites W2149382413 @default.
- W3208113363 cites W2156897217 @default.
- W3208113363 cites W2161308290 @default.
- W3208113363 cites W2161969291 @default.
- W3208113363 cites W2265959009 @default.
- W3208113363 cites W2301743195 @default.
- W3208113363 cites W2325939864 @default.
- W3208113363 cites W2330274280 @default.
- W3208113363 cites W245591269 @default.
- W3208113363 cites W2589255576 @default.
- W3208113363 cites W2592649474 @default.
- W3208113363 cites W2770933756 @default.
- W3208113363 cites W2890524503 @default.
- W3208113363 cites W2910603373 @default.
- W3208113363 cites W2923153064 @default.
- W3208113363 cites W2945019305 @default.
- W3208113363 cites W2946709531 @default.
- W3208113363 cites W2946983027 @default.
- W3208113363 cites W2957744218 @default.
- W3208113363 cites W2963377935 @default.
- W3208113363 cites W2963644257 @default.
- W3208113363 cites W2963839617 @default.
- W3208113363 cites W2964014798 @default.
- W3208113363 cites W2969985801 @default.
- W3208113363 cites W3015671815 @default.
- W3208113363 cites W3034552680 @default.
- W3208113363 cites W3099206234 @default.
- W3208113363 cites W3104792420 @default.
- W3208113363 cites W3117658046 @default.
- W3208113363 cites W3131309013 @default.
- W3208113363 cites W3135657079 @default.
- W3208113363 cites W4211230164 @default.
- W3208113363 doi "https://doi.org/10.1109/tbiom.2021.3122307" @default.
- W3208113363 hasPublicationYear "2022" @default.
- W3208113363 type Work @default.
- W3208113363 sameAs 3208113363 @default.
- W3208113363 citedByCount "6" @default.
- W3208113363 countsByYear W32081133632022 @default.
- W3208113363 countsByYear W32081133632023 @default.
- W3208113363 crossrefType "journal-article" @default.
- W3208113363 hasAuthorship W3208113363A5018403922 @default.
- W3208113363 hasAuthorship W3208113363A5022728528 @default.
- W3208113363 hasAuthorship W3208113363A5057168111 @default.
- W3208113363 hasAuthorship W3208113363A5074877643 @default.
- W3208113363 hasConcept C105795698 @default.
- W3208113363 hasConcept C127413603 @default.
- W3208113363 hasConcept C138885662 @default.
- W3208113363 hasConcept C144024400 @default.
- W3208113363 hasConcept C151730666 @default.
- W3208113363 hasConcept C153180895 @default.
- W3208113363 hasConcept C154945302 @default.
- W3208113363 hasConcept C165064840 @default.
- W3208113363 hasConcept C176217482 @default.
- W3208113363 hasConcept C184297639 @default.
- W3208113363 hasConcept C21547014 @default.
- W3208113363 hasConcept C2776401178 @default.
- W3208113363 hasConcept C2779304628 @default.
- W3208113363 hasConcept C2779343474 @default.
- W3208113363 hasConcept C31510193 @default.
- W3208113363 hasConcept C31972630 @default.
- W3208113363 hasConcept C33923547 @default.
- W3208113363 hasConcept C36289849 @default.
- W3208113363 hasConcept C36613465 @default.
- W3208113363 hasConcept C41008148 @default.
- W3208113363 hasConcept C41895202 @default.
- W3208113363 hasConcept C4641261 @default.
- W3208113363 hasConcept C52102323 @default.
- W3208113363 hasConcept C52622490 @default.
- W3208113363 hasConcept C83665646 @default.
- W3208113363 hasConcept C86803240 @default.
- W3208113363 hasConcept C88799230 @default.
- W3208113363 hasConceptScore W3208113363C105795698 @default.
- W3208113363 hasConceptScore W3208113363C127413603 @default.
- W3208113363 hasConceptScore W3208113363C138885662 @default.
- W3208113363 hasConceptScore W3208113363C144024400 @default.
- W3208113363 hasConceptScore W3208113363C151730666 @default.
- W3208113363 hasConceptScore W3208113363C153180895 @default.