Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208118876> ?p ?o ?g. }
- W3208118876 abstract "In this paper, we study Friedmann cosmology with time-varying vacuum energy density in the context of Brans-Dicke theory. We consider an isotropic and homogeneous flat space, filled with a matter-dominated perfect fluid and a dynamical cosmological term $Lambda(t) $, obeying the equation of state of the vacuum. As the exact nature of a possible time-varying vacuum is yet to be found, we explore $Lambda(t)$ given by the phenomenological law $Lambda(t)=lambda+sigma H$, where $lambda$ and $sigma$ are positive constants. We solve the model and then focus on two different cases $Lambda_{H1}$ and $Lambda_{H2}$ by assuming $Lambda=lambda$ and $Lambda=sigma H$, respectively. Notice that $Lambda_{H1}$ is the analog of the standard $Lambda$CDM, but within the Brans-Dicke cosmology. We find the analytical solution of the main cosmological functions such as the Hubble parameter, the scale factor, deceleration and equation of state parameters for these models. In order to test the viability of the cosmological scenarios, we perform two sets of joint observational analyses of the recent Type Ia supernova data (Pantheon), observational measurements of Hubble parameter data, Baryon acoustic oscillation/Cosmic microwave background data and Local Hubble constant for each model. For the sake of comparison, the same data analysis is performed for the $Lambda$CDM model. Each model shows a transition from decelerated phase to accelerated phase and can be viewed as an effective quintessence behavior. Using the model selection criteria AIC and BIC to distinguish from existing dark energy models, we find that the Brans-Dicke analog of the $Lambda$-cosmology (i.e. our model $Lambda_{H1}$) performs at a level comparable to the standard $Lambda$CDM, whereas $Lambda_{H2}$ is less favoured." @default.
- W3208118876 created "2021-11-08" @default.
- W3208118876 creator A5048456456 @default.
- W3208118876 creator A5052235033 @default.
- W3208118876 date "2021-10-01" @default.
- W3208118876 modified "2023-10-14" @default.
- W3208118876 title "Friedmann cosmology with decaying vacuum density in Brans–Dicke theory" @default.
- W3208118876 cites W1500512830 @default.
- W3208118876 cites W1811111406 @default.
- W3208118876 cites W1818999262 @default.
- W3208118876 cites W1853767801 @default.
- W3208118876 cites W1969221502 @default.
- W3208118876 cites W1976533896 @default.
- W3208118876 cites W1980931786 @default.
- W3208118876 cites W1989972931 @default.
- W3208118876 cites W1990775159 @default.
- W3208118876 cites W1993286253 @default.
- W3208118876 cites W1998322291 @default.
- W3208118876 cites W1998323214 @default.
- W3208118876 cites W2001895884 @default.
- W3208118876 cites W2003686608 @default.
- W3208118876 cites W2004188331 @default.
- W3208118876 cites W2012944238 @default.
- W3208118876 cites W2014514987 @default.
- W3208118876 cites W2018126104 @default.
- W3208118876 cites W2027202978 @default.
- W3208118876 cites W2031797326 @default.
- W3208118876 cites W2036697919 @default.
- W3208118876 cites W2039536451 @default.
- W3208118876 cites W2042369138 @default.
- W3208118876 cites W2056173066 @default.
- W3208118876 cites W2056674443 @default.
- W3208118876 cites W2059243044 @default.
- W3208118876 cites W2060592326 @default.
- W3208118876 cites W2066961420 @default.
- W3208118876 cites W2073163146 @default.
- W3208118876 cites W2075882655 @default.
- W3208118876 cites W2078936565 @default.
- W3208118876 cites W2086592505 @default.
- W3208118876 cites W2096658101 @default.
- W3208118876 cites W2112986581 @default.
- W3208118876 cites W2115674980 @default.
- W3208118876 cites W2117324574 @default.
- W3208118876 cites W2121951791 @default.
- W3208118876 cites W2125504205 @default.
- W3208118876 cites W2131260550 @default.
- W3208118876 cites W2131279590 @default.
- W3208118876 cites W2135920379 @default.
- W3208118876 cites W2139440433 @default.
- W3208118876 cites W2142635246 @default.
- W3208118876 cites W2146363048 @default.
- W3208118876 cites W2147875900 @default.
- W3208118876 cites W2151185137 @default.
- W3208118876 cites W2154120281 @default.
- W3208118876 cites W2154748230 @default.
- W3208118876 cites W2156305595 @default.
- W3208118876 cites W2157494422 @default.
- W3208118876 cites W2160253850 @default.
- W3208118876 cites W2162231850 @default.
- W3208118876 cites W2166325018 @default.
- W3208118876 cites W2168175751 @default.
- W3208118876 cites W2209061280 @default.
- W3208118876 cites W2256158161 @default.
- W3208118876 cites W2501864044 @default.
- W3208118876 cites W2615889461 @default.
- W3208118876 cites W2750220947 @default.
- W3208118876 cites W2759444110 @default.
- W3208118876 cites W2763117186 @default.
- W3208118876 cites W2785039883 @default.
- W3208118876 cites W2795275191 @default.
- W3208118876 cites W2802983726 @default.
- W3208118876 cites W2888614217 @default.
- W3208118876 cites W2898575138 @default.
- W3208118876 cites W2923196444 @default.
- W3208118876 cites W2943552443 @default.
- W3208118876 cites W2946365279 @default.
- W3208118876 cites W2981675486 @default.
- W3208118876 cites W2997774830 @default.
- W3208118876 cites W3015025856 @default.
- W3208118876 cites W3030843649 @default.
- W3208118876 cites W3099029965 @default.
- W3208118876 cites W3099061011 @default.
- W3208118876 cites W3099068825 @default.
- W3208118876 cites W3099410298 @default.
- W3208118876 cites W3099642118 @default.
- W3208118876 cites W3099846329 @default.
- W3208118876 cites W3100221074 @default.
- W3208118876 cites W3100355343 @default.
- W3208118876 cites W3100368830 @default.
- W3208118876 cites W3100508401 @default.
- W3208118876 cites W3100514957 @default.
- W3208118876 cites W3100551640 @default.
- W3208118876 cites W3101019087 @default.
- W3208118876 cites W3102014803 @default.
- W3208118876 cites W3102323991 @default.
- W3208118876 cites W3103938710 @default.
- W3208118876 cites W3104242699 @default.
- W3208118876 cites W3104253863 @default.
- W3208118876 cites W3104390045 @default.
- W3208118876 cites W3105598011 @default.