Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208121597> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W3208121597 endingPage "152260" @default.
- W3208121597 startingPage "152250" @default.
- W3208121597 abstract "The traditional power quality disturbances classification methods include three stages, i.e., feature extraction, feature selection, classifier training. These methods suffer from low accuracy and a limited improvement margin. Since deep learning can greatly improve the accuracy of classification, a new classification method was designed in this paper by combining three types of deep learning frameworks, including CNN-GRU, ResNet-GRU, and Inception-GRU. The proposed method omits the two steps of feature extraction and feature selection, achieving “end-to-end” PQDs identification. To improve the performance on real signals, “pre-training and re-training” is applied. Then, a voting method was employed to vote the prediction labels by different algorithms, which further improves the accuracy of classification. Simulation experiments show that for the classification of compound PQDs, the proposed method performs better than the triple-stage methods and single deep learning classification method. Finally, real signals from Power source are test by the twice-trained model, and the five metrics are better than the old methods." @default.
- W3208121597 created "2021-11-08" @default.
- W3208121597 creator A5003410866 @default.
- W3208121597 creator A5005727198 @default.
- W3208121597 date "2021-01-01" @default.
- W3208121597 modified "2023-10-03" @default.
- W3208121597 title "Multi-Label Classification for Power Quality Disturbances by Integrated Deep Learning" @default.
- W3208121597 cites W1970696760 @default.
- W3208121597 cites W1984965438 @default.
- W3208121597 cites W1986754283 @default.
- W3208121597 cites W1999508011 @default.
- W3208121597 cites W2047172480 @default.
- W3208121597 cites W2049419773 @default.
- W3208121597 cites W2062936627 @default.
- W3208121597 cites W2075448888 @default.
- W3208121597 cites W2080365290 @default.
- W3208121597 cites W2087402435 @default.
- W3208121597 cites W2102317757 @default.
- W3208121597 cites W2108255779 @default.
- W3208121597 cites W2114315281 @default.
- W3208121597 cites W2145205610 @default.
- W3208121597 cites W2149799845 @default.
- W3208121597 cites W2164684831 @default.
- W3208121597 cites W2174926952 @default.
- W3208121597 cites W2194775991 @default.
- W3208121597 cites W2330605115 @default.
- W3208121597 cites W2461851250 @default.
- W3208121597 cites W2777646224 @default.
- W3208121597 cites W2810887434 @default.
- W3208121597 cites W2890548886 @default.
- W3208121597 cites W2901358399 @default.
- W3208121597 cites W2948852829 @default.
- W3208121597 cites W2951953510 @default.
- W3208121597 cites W2954155792 @default.
- W3208121597 cites W2999957694 @default.
- W3208121597 cites W3022676760 @default.
- W3208121597 cites W3086261682 @default.
- W3208121597 cites W4235603051 @default.
- W3208121597 doi "https://doi.org/10.1109/access.2021.3124511" @default.
- W3208121597 hasPublicationYear "2021" @default.
- W3208121597 type Work @default.
- W3208121597 sameAs 3208121597 @default.
- W3208121597 citedByCount "8" @default.
- W3208121597 countsByYear W32081215972022 @default.
- W3208121597 countsByYear W32081215972023 @default.
- W3208121597 crossrefType "journal-article" @default.
- W3208121597 hasAuthorship W3208121597A5003410866 @default.
- W3208121597 hasAuthorship W3208121597A5005727198 @default.
- W3208121597 hasBestOaLocation W32081215971 @default.
- W3208121597 hasConcept C111472728 @default.
- W3208121597 hasConcept C119857082 @default.
- W3208121597 hasConcept C121332964 @default.
- W3208121597 hasConcept C138885662 @default.
- W3208121597 hasConcept C154945302 @default.
- W3208121597 hasConcept C163258240 @default.
- W3208121597 hasConcept C2776482837 @default.
- W3208121597 hasConcept C2779530757 @default.
- W3208121597 hasConcept C2779665505 @default.
- W3208121597 hasConcept C41008148 @default.
- W3208121597 hasConcept C62520636 @default.
- W3208121597 hasConceptScore W3208121597C111472728 @default.
- W3208121597 hasConceptScore W3208121597C119857082 @default.
- W3208121597 hasConceptScore W3208121597C121332964 @default.
- W3208121597 hasConceptScore W3208121597C138885662 @default.
- W3208121597 hasConceptScore W3208121597C154945302 @default.
- W3208121597 hasConceptScore W3208121597C163258240 @default.
- W3208121597 hasConceptScore W3208121597C2776482837 @default.
- W3208121597 hasConceptScore W3208121597C2779530757 @default.
- W3208121597 hasConceptScore W3208121597C2779665505 @default.
- W3208121597 hasConceptScore W3208121597C41008148 @default.
- W3208121597 hasConceptScore W3208121597C62520636 @default.
- W3208121597 hasFunder F4320321001 @default.
- W3208121597 hasLocation W32081215971 @default.
- W3208121597 hasLocation W32081215972 @default.
- W3208121597 hasOpenAccess W3208121597 @default.
- W3208121597 hasPrimaryLocation W32081215971 @default.
- W3208121597 hasRelatedWork W2374429309 @default.
- W3208121597 hasRelatedWork W2961085424 @default.
- W3208121597 hasRelatedWork W3046775127 @default.
- W3208121597 hasRelatedWork W3107474891 @default.
- W3208121597 hasRelatedWork W3209574120 @default.
- W3208121597 hasRelatedWork W4205958290 @default.
- W3208121597 hasRelatedWork W4286629047 @default.
- W3208121597 hasRelatedWork W4306321456 @default.
- W3208121597 hasRelatedWork W4306674287 @default.
- W3208121597 hasRelatedWork W4224009465 @default.
- W3208121597 hasVolume "9" @default.
- W3208121597 isParatext "false" @default.
- W3208121597 isRetracted "false" @default.
- W3208121597 magId "3208121597" @default.
- W3208121597 workType "article" @default.