Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208143772> ?p ?o ?g. }
- W3208143772 abstract "Abstract Since the outbreak of COVID-19, an astronomical number of publications on the pandemic dynamics appeared in the literature, of which many use the susceptible infected removed (SIR) and susceptible exposed infected removed (SEIR) models, or their variants, to simulate and study the spread of the coronavirus. SIR and SEIR are continuous-time models which are a class of initial value problems (IVPs) of ordinary differential equations (ODEs). Discrete-time models such as regression and machine learning have also been applied to analyze COVID-19 pandemic data (e.g. predicting infection cases), but most of these methods use simplified models involving a small number of input variables pre-selected based on a priori knowledge, or use very complicated models (e.g. deep learning), purely focusing on certain prediction purposes and paying little attention to the model interpretability. There have been relatively fewer studies focusing on the investigations of the inherent time-lagged or time-delayed relationships e.g. between the reproduction number (R number), infection cases, and deaths, analyzing the pandemic spread from a systems thinking and dynamic perspective. The present study, for the first time, proposes using systems engineering and system identification approach to build transparent, interpretable, parsimonious and simulatable (TIPS) dynamic machine learning models, establishing links between the R number, the infection cases and deaths caused by COVID-19. The TIPS models are developed based on the well-known NARMAX (Nonlinear AutoRegressive Moving Average with eXogenous inputs) model, which can help better understand the COVID-19 pandemic dynamics. A case study on the UK COVID-19 data is carried out, and new findings are detailed. The proposed method and the associated new findings are useful for better understanding the spread dynamics of the COVID-19 pandemic." @default.
- W3208143772 created "2021-11-08" @default.
- W3208143772 creator A5026841543 @default.
- W3208143772 creator A5034885233 @default.
- W3208143772 date "2021-11-01" @default.
- W3208143772 modified "2023-09-23" @default.
- W3208143772 title "Modelling COVID-19 Pandemic Dynamics Using Transparent, Interpretable, Parsimonious and Simulatable (TIPS) Machine Learning Models: A Case Study from Systems Thinking and System Identification Perspectives" @default.
- W3208143772 cites W1173784407 @default.
- W3208143772 cites W1603510704 @default.
- W3208143772 cites W1965901723 @default.
- W3208143772 cites W1966278916 @default.
- W3208143772 cites W1995614965 @default.
- W3208143772 cites W2024565720 @default.
- W3208143772 cites W2027169855 @default.
- W3208143772 cites W2029896475 @default.
- W3208143772 cites W2043313903 @default.
- W3208143772 cites W2068458829 @default.
- W3208143772 cites W2102380305 @default.
- W3208143772 cites W2117883803 @default.
- W3208143772 cites W2122825543 @default.
- W3208143772 cites W2513160779 @default.
- W3208143772 cites W2766686264 @default.
- W3208143772 cites W2832688480 @default.
- W3208143772 cites W2904708574 @default.
- W3208143772 cites W2947308974 @default.
- W3208143772 cites W2948290060 @default.
- W3208143772 cites W2948521250 @default.
- W3208143772 cites W2977962837 @default.
- W3208143772 cites W3013580552 @default.
- W3208143772 cites W3027676924 @default.
- W3208143772 cites W3036356470 @default.
- W3208143772 cites W3046390683 @default.
- W3208143772 cites W3049737176 @default.
- W3208143772 cites W3088403292 @default.
- W3208143772 cites W3106282967 @default.
- W3208143772 cites W3107979244 @default.
- W3208143772 cites W4254218124 @default.
- W3208143772 doi "https://doi.org/10.1101/2021.11.01.21265653" @default.
- W3208143772 hasPublicationYear "2021" @default.
- W3208143772 type Work @default.
- W3208143772 sameAs 3208143772 @default.
- W3208143772 citedByCount "2" @default.
- W3208143772 countsByYear W32081437722022 @default.
- W3208143772 countsByYear W32081437722023 @default.
- W3208143772 crossrefType "posted-content" @default.
- W3208143772 hasAuthorship W3208143772A5026841543 @default.
- W3208143772 hasAuthorship W3208143772A5034885233 @default.
- W3208143772 hasBestOaLocation W32081437721 @default.
- W3208143772 hasConcept C111472728 @default.
- W3208143772 hasConcept C116834253 @default.
- W3208143772 hasConcept C119857082 @default.
- W3208143772 hasConcept C134306372 @default.
- W3208143772 hasConcept C138885662 @default.
- W3208143772 hasConcept C142724271 @default.
- W3208143772 hasConcept C149782125 @default.
- W3208143772 hasConcept C154945302 @default.
- W3208143772 hasConcept C159877910 @default.
- W3208143772 hasConcept C2779134260 @default.
- W3208143772 hasConcept C2781067378 @default.
- W3208143772 hasConcept C28826006 @default.
- W3208143772 hasConcept C3008058167 @default.
- W3208143772 hasConcept C33923547 @default.
- W3208143772 hasConcept C34862557 @default.
- W3208143772 hasConcept C41008148 @default.
- W3208143772 hasConcept C51544822 @default.
- W3208143772 hasConcept C524204448 @default.
- W3208143772 hasConcept C59822182 @default.
- W3208143772 hasConcept C71924100 @default.
- W3208143772 hasConcept C75553542 @default.
- W3208143772 hasConcept C77405623 @default.
- W3208143772 hasConcept C78045399 @default.
- W3208143772 hasConcept C86803240 @default.
- W3208143772 hasConcept C89623803 @default.
- W3208143772 hasConceptScore W3208143772C111472728 @default.
- W3208143772 hasConceptScore W3208143772C116834253 @default.
- W3208143772 hasConceptScore W3208143772C119857082 @default.
- W3208143772 hasConceptScore W3208143772C134306372 @default.
- W3208143772 hasConceptScore W3208143772C138885662 @default.
- W3208143772 hasConceptScore W3208143772C142724271 @default.
- W3208143772 hasConceptScore W3208143772C149782125 @default.
- W3208143772 hasConceptScore W3208143772C154945302 @default.
- W3208143772 hasConceptScore W3208143772C159877910 @default.
- W3208143772 hasConceptScore W3208143772C2779134260 @default.
- W3208143772 hasConceptScore W3208143772C2781067378 @default.
- W3208143772 hasConceptScore W3208143772C28826006 @default.
- W3208143772 hasConceptScore W3208143772C3008058167 @default.
- W3208143772 hasConceptScore W3208143772C33923547 @default.
- W3208143772 hasConceptScore W3208143772C34862557 @default.
- W3208143772 hasConceptScore W3208143772C41008148 @default.
- W3208143772 hasConceptScore W3208143772C51544822 @default.
- W3208143772 hasConceptScore W3208143772C524204448 @default.
- W3208143772 hasConceptScore W3208143772C59822182 @default.
- W3208143772 hasConceptScore W3208143772C71924100 @default.
- W3208143772 hasConceptScore W3208143772C75553542 @default.
- W3208143772 hasConceptScore W3208143772C77405623 @default.
- W3208143772 hasConceptScore W3208143772C78045399 @default.
- W3208143772 hasConceptScore W3208143772C86803240 @default.
- W3208143772 hasConceptScore W3208143772C89623803 @default.
- W3208143772 hasLocation W32081437721 @default.
- W3208143772 hasLocation W32081437722 @default.