Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208145454> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W3208145454 endingPage "1915" @default.
- W3208145454 startingPage "1907" @default.
- W3208145454 abstract "In recent years, car tires are considered one of the most crucial environmental pollution problems in many countries. Therefore, reusing waste rubber crumbs from recycled tires as aggregates for concrete has attracted increasing attention. Rubberized concrete could also be an economical and environmentally-friendly construction material. Besides, enhancing the ductility, toughness, thermal insulation, and impact resistance are also advantageous while using rubberized concrete. On the contrary, rubberized concrete’s mechanical properties are highly dependent on the replacement amount of rubber. Thus, the estimation of the compressive strength of rubberized concrete is crucial for engineering applications. In this study, 162 experimental results collected from the literature are used to construct a database and attempt to predict the compressive strength of rubberized concrete. An artificial neural network (ANN) is developed, using 7 input variables, namely binder, superplasticizer, water, fine aggregate, coarse aggregate, crumb rubber, and chipped rubber. The model performance is evaluated using three performance indicators, such as root mean square error (RMSE), mean absolute error (MAE), the Pearson correlation coefficient (R). The results show that the proposed ANN algorithm exhibits excellent prediction performance and accurately estimated the compressive strength of rubberized concrete. The results in the present research are useful and could provide a reference for engineers in predicting the compressive strength of rubberized concrete." @default.
- W3208145454 created "2021-11-08" @default.
- W3208145454 creator A5069214273 @default.
- W3208145454 date "2021-10-28" @default.
- W3208145454 modified "2023-10-16" @default.
- W3208145454 title "Prediction of the Compressive Strength of Rubberized Concrete Based on Machine Learning Algorithm" @default.
- W3208145454 cites W1975910236 @default.
- W3208145454 cites W1988600871 @default.
- W3208145454 cites W2016000961 @default.
- W3208145454 cites W2056707911 @default.
- W3208145454 cites W2064703303 @default.
- W3208145454 cites W2911508326 @default.
- W3208145454 cites W2998463744 @default.
- W3208145454 cites W3013155739 @default.
- W3208145454 cites W3044409324 @default.
- W3208145454 cites W3045302412 @default.
- W3208145454 cites W3046434443 @default.
- W3208145454 doi "https://doi.org/10.1007/978-981-16-7160-9_193" @default.
- W3208145454 hasPublicationYear "2021" @default.
- W3208145454 type Work @default.
- W3208145454 sameAs 3208145454 @default.
- W3208145454 citedByCount "0" @default.
- W3208145454 crossrefType "book-chapter" @default.
- W3208145454 hasAuthorship W3208145454A5069214273 @default.
- W3208145454 hasConcept C127413603 @default.
- W3208145454 hasConcept C159985019 @default.
- W3208145454 hasConcept C176933379 @default.
- W3208145454 hasConcept C192562407 @default.
- W3208145454 hasConcept C192757587 @default.
- W3208145454 hasConcept C2776122628 @default.
- W3208145454 hasConcept C2781191127 @default.
- W3208145454 hasConcept C30407753 @default.
- W3208145454 hasConcept C4679612 @default.
- W3208145454 hasConcept C66938386 @default.
- W3208145454 hasConcept C99595764 @default.
- W3208145454 hasConceptScore W3208145454C127413603 @default.
- W3208145454 hasConceptScore W3208145454C159985019 @default.
- W3208145454 hasConceptScore W3208145454C176933379 @default.
- W3208145454 hasConceptScore W3208145454C192562407 @default.
- W3208145454 hasConceptScore W3208145454C192757587 @default.
- W3208145454 hasConceptScore W3208145454C2776122628 @default.
- W3208145454 hasConceptScore W3208145454C2781191127 @default.
- W3208145454 hasConceptScore W3208145454C30407753 @default.
- W3208145454 hasConceptScore W3208145454C4679612 @default.
- W3208145454 hasConceptScore W3208145454C66938386 @default.
- W3208145454 hasConceptScore W3208145454C99595764 @default.
- W3208145454 hasLocation W32081454541 @default.
- W3208145454 hasOpenAccess W3208145454 @default.
- W3208145454 hasPrimaryLocation W32081454541 @default.
- W3208145454 hasRelatedWork W2387502129 @default.
- W3208145454 hasRelatedWork W2501183405 @default.
- W3208145454 hasRelatedWork W2800685560 @default.
- W3208145454 hasRelatedWork W2854999757 @default.
- W3208145454 hasRelatedWork W3157576696 @default.
- W3208145454 hasRelatedWork W4225806568 @default.
- W3208145454 hasRelatedWork W4295214949 @default.
- W3208145454 hasRelatedWork W4312578551 @default.
- W3208145454 hasRelatedWork W657617307 @default.
- W3208145454 hasRelatedWork W3200746150 @default.
- W3208145454 isParatext "false" @default.
- W3208145454 isRetracted "false" @default.
- W3208145454 magId "3208145454" @default.
- W3208145454 workType "book-chapter" @default.