Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208161069> ?p ?o ?g. }
- W3208161069 endingPage "108645" @default.
- W3208161069 startingPage "108645" @default.
- W3208161069 abstract "Extra virgin olive oil (EVOO) is frequently adulterated by mixing it with soft refined oils (SROO). The differentiation of EVOO from its blends with SROO is not possible with the most common approaches, and, for this reason, the discriminating power of liquid chromatography-high resolution mass spectrometry (LC-MS), gas-chromatography ion mobility spectrometry (GC-IMS) and flash gas-chromatography electronic nose (FGC-Enose) was examined previously. Here, the combination of the above-mentioned techniques for an improvement in classification power of the methods is explored. A total of 43 commercial EVOOs and 18 illegal mixtures of SROO with EVOO were previously analysed by LC-(+/−)MS, GC-IMS and FGC-Enose. Low-level and mid-level data fusion of the four datasets were performed. The merged unique fingerprints were submitted to partial least squared discriminant analysis (PLS-DA), and the extrapolated most informative variables were used to build support vector machine (SVM) classifiers. Statistical indicators were calculated and compared to find out the best classifier. The results of PLS-DA-SVM strategies on the combination of datasets demonstrated that, after low-level data fusion, the discriminatory capability of the two merged GC-based techniques was remarkably improved as compared to the individual techniques. This indicates that merging the datasets before PLS-DA better retrieves the most informative variables and, thus, enhances group separation and classification of unknowns. The combination of LC(+/−)MS datasets, both by mid- and low-level data fusion, did not show significant enhancement in terms of discrimination of EVOO from SROO as compared to the individual LC(+)MS matrix. The low-level combination of the four datasets (LC(+/−)MS, GC-IMS, FGC-Enose) was successful, although this laborious option is not a viable path in industry quality assurance. This study primarily provides new paths for the authentication of EVOO, taking advantage of merging multimodal LC-(+/−)MS, GC-IMS and FGC-Enose data, with consequent improvement in the performances of the classification models. The most promising results were achieved by the low-level data fusion of GC-IMS and FGC-Enose data." @default.
- W3208161069 created "2021-11-08" @default.
- W3208161069 creator A5006379915 @default.
- W3208161069 creator A5011612389 @default.
- W3208161069 creator A5059857211 @default.
- W3208161069 creator A5060710157 @default.
- W3208161069 creator A5082056908 @default.
- W3208161069 creator A5085241136 @default.
- W3208161069 date "2022-03-01" @default.
- W3208161069 modified "2023-10-17" @default.
- W3208161069 title "Detection of soft-refined oils in extra virgin olive oil using data fusion approaches for LC-MS, GC-IMS and FGC-Enose techniques: The winning synergy of GC-IMS and FGC-Enose" @default.
- W3208161069 cites W1985291166 @default.
- W3208161069 cites W1992483596 @default.
- W3208161069 cites W1994726362 @default.
- W3208161069 cites W1997207432 @default.
- W3208161069 cites W2011226144 @default.
- W3208161069 cites W2022558965 @default.
- W3208161069 cites W2026023319 @default.
- W3208161069 cites W2032359916 @default.
- W3208161069 cites W2038952327 @default.
- W3208161069 cites W2071325350 @default.
- W3208161069 cites W2073063558 @default.
- W3208161069 cites W2112317629 @default.
- W3208161069 cites W2286347471 @default.
- W3208161069 cites W2486617596 @default.
- W3208161069 cites W2771353921 @default.
- W3208161069 cites W2888745950 @default.
- W3208161069 cites W2897254430 @default.
- W3208161069 cites W2904789001 @default.
- W3208161069 cites W2908491166 @default.
- W3208161069 cites W2912368594 @default.
- W3208161069 cites W2954308625 @default.
- W3208161069 cites W3015574337 @default.
- W3208161069 cites W3034042992 @default.
- W3208161069 cites W3047470449 @default.
- W3208161069 cites W3080643457 @default.
- W3208161069 cites W3083247148 @default.
- W3208161069 cites W3088547288 @default.
- W3208161069 cites W3124239741 @default.
- W3208161069 cites W3176569793 @default.
- W3208161069 doi "https://doi.org/10.1016/j.foodcont.2021.108645" @default.
- W3208161069 hasPublicationYear "2022" @default.
- W3208161069 type Work @default.
- W3208161069 sameAs 3208161069 @default.
- W3208161069 citedByCount "17" @default.
- W3208161069 countsByYear W32081610692021 @default.
- W3208161069 countsByYear W32081610692022 @default.
- W3208161069 countsByYear W32081610692023 @default.
- W3208161069 crossrefType "journal-article" @default.
- W3208161069 hasAuthorship W3208161069A5006379915 @default.
- W3208161069 hasAuthorship W3208161069A5011612389 @default.
- W3208161069 hasAuthorship W3208161069A5059857211 @default.
- W3208161069 hasAuthorship W3208161069A5060710157 @default.
- W3208161069 hasAuthorship W3208161069A5082056908 @default.
- W3208161069 hasAuthorship W3208161069A5085241136 @default.
- W3208161069 hasConcept C113196181 @default.
- W3208161069 hasConcept C12267149 @default.
- W3208161069 hasConcept C127313418 @default.
- W3208161069 hasConcept C138885662 @default.
- W3208161069 hasConcept C153180895 @default.
- W3208161069 hasConcept C154945302 @default.
- W3208161069 hasConcept C158525013 @default.
- W3208161069 hasConcept C162356407 @default.
- W3208161069 hasConcept C185592680 @default.
- W3208161069 hasConcept C23895516 @default.
- W3208161069 hasConcept C2988377048 @default.
- W3208161069 hasConcept C3020199158 @default.
- W3208161069 hasConcept C31903555 @default.
- W3208161069 hasConcept C33954974 @default.
- W3208161069 hasConcept C41008148 @default.
- W3208161069 hasConcept C41895202 @default.
- W3208161069 hasConcept C43617362 @default.
- W3208161069 hasConcept C62649853 @default.
- W3208161069 hasConcept C69738355 @default.
- W3208161069 hasConcept C95623464 @default.
- W3208161069 hasConceptScore W3208161069C113196181 @default.
- W3208161069 hasConceptScore W3208161069C12267149 @default.
- W3208161069 hasConceptScore W3208161069C127313418 @default.
- W3208161069 hasConceptScore W3208161069C138885662 @default.
- W3208161069 hasConceptScore W3208161069C153180895 @default.
- W3208161069 hasConceptScore W3208161069C154945302 @default.
- W3208161069 hasConceptScore W3208161069C158525013 @default.
- W3208161069 hasConceptScore W3208161069C162356407 @default.
- W3208161069 hasConceptScore W3208161069C185592680 @default.
- W3208161069 hasConceptScore W3208161069C23895516 @default.
- W3208161069 hasConceptScore W3208161069C2988377048 @default.
- W3208161069 hasConceptScore W3208161069C3020199158 @default.
- W3208161069 hasConceptScore W3208161069C31903555 @default.
- W3208161069 hasConceptScore W3208161069C33954974 @default.
- W3208161069 hasConceptScore W3208161069C41008148 @default.
- W3208161069 hasConceptScore W3208161069C41895202 @default.
- W3208161069 hasConceptScore W3208161069C43617362 @default.
- W3208161069 hasConceptScore W3208161069C62649853 @default.
- W3208161069 hasConceptScore W3208161069C69738355 @default.
- W3208161069 hasConceptScore W3208161069C95623464 @default.
- W3208161069 hasLocation W32081610691 @default.
- W3208161069 hasOpenAccess W3208161069 @default.
- W3208161069 hasPrimaryLocation W32081610691 @default.